Übungen zur Vorlesung "Stochastische Prozesse"

Wintersemester 2016/17, Blatt 5

Abgabetermin: 21.11.2016, bis 12:00 Uhr in Fach Nr. 3.16., UG Eckerstr. 1 (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Bitte nur maximal zu zweit abgeben.)

Aufgabe 15 (4 Punkte)

- a) Sei Y eine relle Zufallsvariable mit $\mathbb{E}|Y| < \infty$, $(\mathcal{F}_n)_{n \in \mathbb{N}}$ eine Filtration und $X_n := \mathbb{E}(Y|\mathcal{F}_n)$. Weiter sei $\mathcal{F}_\infty := \sigma\left(\bigcup_{n \in \mathbb{N}} \mathcal{F}_n\right)$. Zeigen Sie, dass die Folge $(X_n)_{n \in \mathbb{N}}$ fast sicher und in L^1 gegen $\mathbb{E}(Y|\mathcal{F}_\infty)$ konvergiert.
- b) Folgern Sie aus (a) das 0-1-Gesetz von Kolmogorov, nämlich: Sei $(X_n)_n$ eine Folge von unabhängigen Zufallsvariablen und $\mathcal{T} := \bigcap_{n \in \mathbb{N}} \sigma(X_k : k \ge n)$ die σ -Algebra der terminalen Ereignisse. Dann gilt für alle $A \in \mathcal{T}$, dass $P(A) \in \{0,1\}$.

Aufgabe 16 (4 Punkte)

Sei $r \in \mathbb{N}$, $\psi \colon \mathbb{R}^r \to \mathbb{R}$ eine symmetrische, Borel-messbare Funktion und sei $(X_i)_{i=1}^{\infty}$ eine Folge von iid Zufallsvariablen, sodass $\mathbb{E}|\psi(X_1,\ldots,X_r)|<\infty$. Dann wird

$$U_n := \binom{n}{r}^{-1} \sum_{\{i_1, \dots, i_r\} \in B_{r,n}} \psi(X_{i_1}, \dots, X_{i_r})$$

U-Statistik genannt, wobei $B_{r,n}$ die Menge der r-elementigen Teilmengen von $\{1,\ldots,n\}$ bezeichne.

a) Zeigen Sie: $(U_n)_{n\geq r}$ ist ein Rückwärtsmartingal bzgl. $\mathcal{F}:=(\mathcal{F}_n)_{n\geq r}$, wobei

$$\mathcal{F}_n := \sigma((X_{1:n}, \dots, X_{n:n}), X_{n+1}, X_{n+2}, \dots)$$
.

- b) Beweisen Sie, dass (U_n) in L^1 konvergiert und bestimmen Sie den Grenzwert.
- HINWEIS: (1) In diesem Zusammenhang heißt eine Funktion $\psi \colon \mathbb{R}^r \to \mathbb{R}$ symmetrisch, falls $\psi(x_1, \dots, x_r) = \psi(x_{\sigma(1)}, \dots, x_{\sigma(r)})$ für alle Permutationen σ auf $\{1, \dots, r\}$ gilt.
 - (2) Für reellwertige Zufallsvariablen X_1,\ldots,X_n sind $X_{1:n},\ldots,X_{n:n}$ die der Größe nach geordneten Beobachtungen, d.h. $X_{1:n}\leq\ldots\leq X_{n:n}$.
 - (3) Für die Konvergenz in (b) dürfen Sie das 0-1-Gesetz von Hewitt-Savage verwenden.

Aufgabe 17 (4 Punkte)

Sei $(\Omega, \mathcal{A}, P, T)$ ein dynamisches System. Sei \mathcal{I} das Mengensystem der T-invarianten Mengen. Zeigen Sie:

- a) \mathcal{I} ist eine σ -Algebra.
- b) $f: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B})$ ist genau dann \mathcal{I} -messbar, wenn $f \circ T = f$ P-fast sicher.
- c) \mathcal{I} ist genau dann P-trivial, wenn jede invariante Funktion $f:(\Omega,\mathcal{A})\to(\mathbb{R},\mathcal{B})$ (also $f\circ T=f$) fast sicher konstant ist.
- d) Für jede invariante Menge $A \in \mathcal{I}$ gilt: $\exists A^* \text{ mit } T^{-1}(A^*) = A^* \text{ und } P(A \triangle A^*) = 0$.

Aufgabe 18 (4 Punkte)

Sei (X, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $T: X \to X$ eine maßerhaltende Transformation. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- a) T ist ergodisch.
- b) Es gilt $\lim_{n\to\infty} \frac{1}{n} \sum_{j=0}^{n-1} P(T^{-j}(A) \cap B) = P(A)P(B)$ für alle $A, B \in \mathcal{A}$.
- c) Es gilt $\lim_{n\to\infty} \frac{1}{n} \sum_{j=0}^{n-1} P(T^{-j}(A) \cap A) = P(A)^2$ für alle $A \in \mathcal{A}$.