Übungen zur Vorlesung "Mathematik II für Studierende des Ingenieurwesens"

Blatt 5

Abgabetermin: Freitag, 26.05.2017, bis 14:00 Uhr in den Briefkästen im Gebäude 051. (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

Für eine quadratische Matrix $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathbb{R}^{n \times n}$ wird die Spur von A tr(A) definiert als die Summe der Diagonalenelemente von A, d.h. tr $(A) := \sum_{i=1}^{n} a_{ii}$.

- a) Zeigen Sie, dass für $n \times m$ -Matrizen $A \in \mathbb{R}^{n \times m}$ und $m \times n$ -Matrizen $B \in \mathbb{R}^{m \times n}$ gilt: $\operatorname{tr}(A \cdot B) = \operatorname{tr}(B \cdot A)$.
- b) Folgern Sie aus Teil a), dass ähnliche Matrizen stets die gleiche Spur haben, d.h. gilt $B = C^{-1}AC$ für zwei quadratische Matrizen $A, B \in \mathbb{R}^{n \times n}$ und eine reguläre quadratische Matrix $C \in \mathbb{R}^{n \times n}$, so ist $\operatorname{tr}(A) = \operatorname{tr}(B)$.
- c) Sei V ein endlich-dimensionaler Vektorraum und $f:V\to V$ eine lineare Abbildung. Man definiert die Spur $\operatorname{tr}(f)$ von f als die Spur der darstellenden Matrix von f bezüglich einer beliebigen Basis von V. Zeigen Sie, dass $\operatorname{tr}(f)$ wohldefiniert ist, d.h. unabhängig von der Wahl der Basis von V.

Aufgabe 2 (4 Punkte)

- a) Geben Sie eine Matrix $A \in \mathbb{R}^{3\times 3}$ an, für die keine Basis aus Eigenvektoren existiert.
- b) Sei

$$A = \left(\begin{array}{ccc} 1 & 4 & 0 \\ 2 & 1 & 4 \\ 0 & 2 & 1 \end{array}\right).$$

Bestimmen Sie die Eigenwerte und Eigenvektoren von A sowie ein $C \in \mathbb{R}^{3\times 3}$, so dass $C^{-1}AC$ eine Diagonalmatrix ist.

Aufgabe 3 (4 Punkte)

Seien $f, g : \mathbb{R}^3 \to \mathbb{R}^3$ Drehungen, also $f, g \in SO(3)$, wobei f eine Drehung um die x-Achse um θ und g eine Drehung um die z-Achse um φ ist. Zeigen Sie: $g \circ f$ ist ebenfalls eine Drehung, also $g \circ f \in SO(3)$, und bestimmen Sie die zugehörige Drehachse.

Aufgabe 4 (4 Punkte)

Berechnen Sie A^{25} für

$$A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right).$$

HINWEIS: Bekanntlich gilt $A = C^{-1}DC$ für eine geeignete Matrix C und eine Diagonalmatrix D. Es ist einfach, $(C^{-1}DC)^{25}$ auszurechnen.

Die Übungsaufgaben sowie weitere Informationen zur Vorlesung finden Sie auf der Internetseite: http://www.stochastik.uni-freiburg.de/lehre/ss-2017/vorlesung-mathe-II-ing-ws-2017