
Artificial Intelligence

Albert-Ludwigs-Universität Freiburg

Thorsten Schmidt
Abteilung für Mathematische Stochastik

www.stochastik.uni-freiburg.de
thorsten.schmidt@stochastik.uni-freiburg.de
SS 2017

Our goal today

Dynamic Approximate Programming
Introduction

Markov decision problems

Approximate dynamic programming

SS 2017 Thorsten Schmidt – Artificial Intelligence 141 / 156

Literature (incomplete, but growing):

I. Goodfellow, Y. Bengio und A. Courville (2016). Deep Learning.
http://www.deeplearningbook.org. MIT Press

D. Barber (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press

R. S. Sutton und A. G. Barto (1998). Reinforcement Learning : An Introduction. MIT Press

G. James u. a. (2014). An Introduction to Statistical Learning: With Applications in R.
Springer Publishing Company, Incorporated. isbn: 1461471370, 9781461471370

T. Hastie, R. Tibshirani und J. Friedman (2009). The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc. url:
https://statweb.stanford.edu/~tibs/ElemStatLearn/

K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

CRAN Task View: Machine Learning, available at
https://cran.r-project.org/web/views/MachineLearning.html

UCI ML Repository: http://archive.ics.uci.edu/ml/ (371 datasets)

Warren B Powell (2011). Approximate Dynamic Programming: Solving the curses of
dimensionality. Bd. 703. John Wiley & Sons

SS 2017 Thorsten Schmidt – Artificial Intelligence 142 / 156

http://www.deeplearningbook.org
https://statweb.stanford.edu/~tibs/ElemStatLearn/
https://cran.r-project.org/web/views/MachineLearning.html
http://archive.ics.uci.edu/ml/

Dynamic Approximate Programming

From now on, we study the field of dynamic approximate programming
(ADP) following Powell (2011)1.
As we already learned, there are many dialects in this field and we treat
them here. This includes reinforcment learning, and a classic reference
is Sutton & Barto2. For further references consider Powell (2011).
Examples are: moving a robot, investing in stocks, playing chess or go.
The system contains four main elements: a policy, a reward funciton, a
value function and (optional) a model of the environment.

1Warren B Powell (2011). Approximate Dynamic Programming: Solving the curses of
dimensionality. Bd. 703. John Wiley & Sons.

2R. S. Sutton und A. G. Barto (1998). Reinforcement Learning : An Introduction. MIT Press.
SS 2017 Thorsten Schmidt – Artificial Intelligence 143 / 156

An Example

Let us start with a simple example.

S

1

3

2

E
8

3

15

5
17

10
14

It is our goal to find the shortest path from Start to End.

SS 2017 Thorsten Schmidt – Artificial Intelligence 144 / 156

By I we denote the set of intersections (S,1,. . . ,E),
if we are at intersection i we can go to j ∈I +

i at cost ci j,
we start at S and end in E. Denote

vi := cost from i to E

and we could iterate

vi←min
{

vi,min
j∈Ii

(ci j + v j)
}
, vi ∈I

and stop if the iteration does not change.

Iteration S 1 2 3 E
1 ∞ ∞ ∞ ∞ 0
2 ∞ ∞ 10 15 0
3 30 18 10 15 0
4 26 18 10 15 0

What is an efficient algorithm for solving this problem ?

SS 2017 Thorsten Schmidt – Artificial Intelligence 145 / 156

This is a shortest-path problem. Let us introduce some notation for
this. At time t, we start from a state St and can choose action at which
leads to the transition to state St+1 given by the transition function S,
s.t.

St+1 = S(St ,at)

Aditionally there is a reward, denoted by Ct(St ,at) and we define the
value of being in state St by

Vt(St) = max
at

{
Ct(St ,at)+Vt+1(St+1)}, St ∈St ,

cSt denoting the possible states at time t.
Let us visit some further examples.

SS 2017 Thorsten Schmidt – Artificial Intelligence 146 / 156

Gambling

Consider a gambler who plays T rounds, on an i.i.d. (Wt)t=1,...,T game
with probability p = P(Wt = 1)> 1− p of winning. We want to maximize
E[log(ST)]. It can be shown that it is optimal to proceed backwards in
time using conditional expectations (this is dynamic programming)!
Here, at is the amount he bets at t and we require at ≤ St−1. Then,

St = St−1 +atWt −at(1−Wt).

The value at time t, given his stock is in state St is

Vt(St) = max
0≤at+1≤St

E
[
Vt+1(St+1)|St

]
.

SS 2017 Thorsten Schmidt – Artificial Intelligence 147 / 156

Now we proceed backwards. Clearly,

VT (s) = logs

VT−1(s) = max
0≤a≤s

E
[
VT (s+aWT −a(1−WT))|ST−1 = s

]
= max

0≤a≤s

(
p log(s+a)+(1− p) log(s−a)

)
.

The maximum is attained for a∗ = (2p−1)s and VT−1(s) = log(s)+K, with
costant K = p log(2p)+(1− p) log(2(1− p)). Backward in time we obtain

Vt(s) = logSt +Kt ,

with an explicit constant Kt . Our optimal policy is

at = (2p−1)St−1.

SS 2017 Thorsten Schmidt – Artificial Intelligence 148 / 156

The bandit problem

When the distribution of the game is not known, one has to acquire
information, and the classical example is the bandit problem. Consider a
gambler who can choose betwee K machines.
The probability of winning might be different and are unknown to us.
A trade-off arises between playing only the optimal machine or trying
other machines with (estimated) lower probability for minimizing the
variance which is one-to-one to learning better their true probability.
For a nite treatment, consider for example Richard Weber (1992). „On
the Gittins Index for Multiarmed Bandits“. In: Ann. Appl. Probab. 2.4,
S. 1024–1033.

SS 2017 Thorsten Schmidt – Artificial Intelligence 149 / 156

Markov decision problems

We give a short introduction into the field3. Assume that the state space
S if finite.
We have a set At(s) of possible actions at time t when the system is in
state s. An action at t is a measurable mapping at such that at(s) ∈At(s)
for all s ∈S .
A policy is a collection of actions π = (a0, . . . ,aT−1). We assume that the
set of policies is non-empty.
The dynamics of the model is specified via the (conditional) transition
matrix

(pt(st+1|st ,at))st+1,st∈S

specifying P(St+1 = st+1|St = st ,at) = pt(st+1|st ,at).
Hence, the dynamics and with it the probability for evaluation depends
on π. We denote

Pπ
t,s(·) := Pπ (·|St = s)

and by Eπ
t,s the associated expectation.

3See N. Bäuerle und U. Rieder (2011). Markov decision processes with applications to
finance. for details and further information.
SS 2017 Thorsten Schmidt – Artificial Intelligence 150 / 156

Our aim is to maximize the contribution given by the functions Ct(s,a)
where CT (s,a) =CT (s) does not depend on a. We additionally assume
that the contribution is sufficiently integrable.
Our goal is to aim at

sup
π

Eπ

[T

∑
0=1

Ct(St ,at)

]
.

For example, we could consider Ct(s,a) = γ tC(s,a) with possible
discounting factor γ > 0.

SS 2017 Thorsten Schmidt – Artificial Intelligence 151 / 156

The Bellman Equation

The key to dynamic programming is that in our set-up, allowing the policy
to depend on the full history does not improve the maximal expected
reward, see Theorem 2.2.3. in Bäuerle&Rieder (2011).
We define the value function by

Vt(s) = sup
π

Eπ
t,s

[T

∑
s=t

Ct(St ,at)

]
.

Remark

In general Vt need not be measurable which causes a number of delicate
problems, see D. P. Bertsekas und S. Shreve (2004). Stochastic optimal
control: the discrete-time case. for a detailed treatment. The reason can
be traced back to the fact that a projection of a Borel set need not be Borel
(which leads to the fruitful notion of analytic sets, however).

SS 2017 Thorsten Schmidt – Artificial Intelligence 152 / 156

Define

C∗t (s) := sup
at∈At

(
Ct(s,at)+E

[
Vt+1(St+1)|St = s,at

])
(1)

Recall, that St+1 also depends on at = at(s) (which we suppress in the
notation).
The optimal policy can be computed backward by reward iteration. Let
a∗t be a maximizing policy, that is a∗t achieves C∗t in Equation (1).
One can now show that the Bellman equation holds, i.e.

Vt(s) =C∗t (s) t = 0, . . . ,T.

Under an additional (mild) structural assumption, one may verify that
there always exist optimal policies π∗ which can be obtained by
maximizing the value function in each period (Theorem 2.3.8. in Bäuerle
Rieder).

SS 2017 Thorsten Schmidt – Artificial Intelligence 153 / 156

Algorithm

Step 0 Initialize by the terminal condition VT (ST) and set t = T −1

Step 1 Compute

Vt(s) = sup
at∈At

(
Ct(s,at)+E

[
Vt+1(St+1)|St = s,at

])
for all s ∈S

Step 2 Decrement t and repeat Step 1 until t = 0

SS 2017 Thorsten Schmidt – Artificial Intelligence 154 / 156

Infinite-time-horizon

For this case several algorithms exist, to name value iteration and
policy iteration which will not be discussed here, see Powell Section
3.3. ff.
For more mathematical details (and there are many!) we refer to Powell,
Bäuerle&Rieder and the excellent source Bertsekas&Shreve.

SS 2017 Thorsten Schmidt – Artificial Intelligence 155 / 156

Approximate dynamic programming (ADP)

While we introduce a nice theory beforehand, the core equation

sup
π

Eπ

[T

∑
0=1

Ct(St ,at)

]
my be intractable even for very small problems.
ADP now offers a powerful set of strategies to solve these problems
approximately.

We have the problem of curse of dimensionality in state space,
outcome space and action space.

SS 2017 Thorsten Schmidt – Artificial Intelligence 156 / 156

	Dynamic Approximate Programming
	Introduction

	Markov decision problems
	Approximate dynamic programming

