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Dynamic Approximate Programming

From now on, we study the field of dynamic approximate programming
(ADP) following Powell (2011)1.
As we already learned, there are many dialects in this field and we treat
them here. This includes reinforcment learning, and a classic reference
is Sutton & Barto2. For further references consider Powell (2011).
The terminology "reinforcementßtems from behavioural sciences. A
positive reinforcer is something that increases the probability of a
preceding response (in contrast to a negative reinforcer, like an
electronic shock), see also Watkins (1989).
Examples are: moving a robot, investing in stocks, playing chess or go.
The system contains four main elements: a policy, a reward funciton, a
value function and (optional) a model of the environment.

1Warren B Powell (2011). Approximate Dynamic Programming: Solving the curses of
dimensionality. Bd. 703. John Wiley & Sons.

2R. S. Sutton und A. G. Barto (1998). Reinforcement Learning : An Introduction. MIT Press.
SS 2017 Thorsten Schmidt – Artificial Intelligence 158 / 196



An Example

Let us start with a simple example.
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It is our goal to find the shortest path from Start to End.
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By I we denote the set of intersections (S,1,. . . ,E),
if we are at intersection i we can go to j ∈I +

i at cost ci j,
we start at S and end in E. Denote

vi := cost from i to E

and we could iterate

vi←min
{

vi,min
j∈Ii

(ci j + v j)
}
, vi ∈I

and stop if the iteration does not change.

Iteration S 1 2 3 E
1 ∞ ∞ ∞ ∞ 0
2 ∞ ∞ 10 15 0
3 30 18 10 15 0
4 26 18 10 15 0

What is an efficient algorithm for solving this problem ?
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This is a shortest-path problem. Let us introduce some notation for
this. At time t, we start from a state St and can choose action at which
leads to the transition to state St+1 given by the transition function S,
s.t.

St+1 = S(St ,at)

Aditionally there is a reward, denoted by Ct(St ,at) and we define the
value of being in state St by

Vt(St) = max
at

{
Ct(St ,at)+Vt+1(St+1)}, St ∈St ,

cSt denoting the possible states at time t.
Let us visit some further examples.
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Gambling

Consider a gambler who plays T rounds, on an i.i.d. (Wt)t=1,...,T game
with probability p = P(Wt = 1)> 1− p of winning. We want to maximize
E[log(ST )]. It can be shown that it is optimal to proceed backwards in
time using conditional expectations (this is dynamic programming)!
Here, at is the amount he bets at t and we require at ≤ St−1. Then,

St = St−1 +atWt −at(1−Wt).

The value at time t, given his stock is in state St is

Vt(St) = max
0≤at+1≤St

E
[
Vt+1(St+1)|St

]
.
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Now we proceed backwards. Clearly,

VT (s) = logs

VT−1(s) = max
0≤a≤s

E
[
VT (s+aWT −a(1−WT ))|ST−1 = s

]
= max

0≤a≤s

(
p log(s+a)+(1− p) log(s−a)

)
.

The maximum is attained for a∗ = (2p−1)s and VT−1(s) = log(s)+K, with
costant K = p log(2p)+(1− p) log(2(1− p)). Backward in time we obtain

Vt(s) = logSt +Kt ,

with an explicit constant Kt . Our optimal policy is

at = (2p−1)St−1.
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The bandit problem

When the distribution of the game is not known, one has to acquire
information, and the classical example is the bandit problem. Consider a
gambler who can choose betwee K machines.
The probability of winning might be different and are unknown to us.
A trade-off arises between playing only the optimal machine or trying
other machines with (estimated) lower probability for minimizing the
variance which is one-to-one to learning better their true probability.
For a nite treatment, consider for example Richard Weber (1992). „On
the Gittins Index for Multiarmed Bandits“. In: Ann. Appl. Probab. 2.4,
S. 1024–1033.
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Markov decision problems

We give a short introduction into the field3. Assume that the state space
S if finite.
We have a set At(s) of possible actions at time t when the system is in
state s. An action at t is a measurable mapping at such that at(s) ∈At(s)
for all s ∈S .
A policy is a collection of actions π = (a0, . . . ,aT−1). We assume that the
set of policies is non-empty.
The dynamics of the model is specified via the (conditional) transition
matrix

(pt(st+1|st ,at))st+1,st∈S

specifying P(St+1 = st+1|St = st ,at) = pt(st+1|st ,at).
Hence, the dynamics and with it the probability for evaluation depends
on π. We denote

Pπ
t,s(·) := Pπ (·|St = s)

and by Eπ
t,s the associated expectation.

3See N. Bäuerle und U. Rieder (2011). Markov decision processes with applications to
finance. for details and further information.
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Our aim is to maximize the contribution given by the functions Ct(s,a)
where CT (s,a) =CT (s) does not depend on a. We additionally assume
that the contribution is sufficiently integrable.
Our goal is to aim at

sup
π

Eπ

[ T

∑
0=1

Ct(St ,at)

]
.

For example, we could consider Ct(s,a) = γ tC(s,a) with possible
discounting factor γ > 0.
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The Bellman Equation

The key to dynamic programming is that in our set-up, allowing the policy
to depend on the full history does not improve the maximal expected
reward, see Theorem 2.2.3. in Bäuerle&Rieder (2011).
We define the value function by

Vt(s) = sup
π

Eπ
t,s

[ T

∑
s=t

Ct(St ,at)

]
.

Remark

In general Vt need not be measurable which causes a number of delicate
problems, see D. P. Bertsekas und S. Shreve (2004). Stochastic optimal
control: the discrete-time case. for a detailed treatment. The reason can
be traced back to the fact that a projection of a Borel set need not be Borel
(which leads to the fruitful notion of analytic sets, however).
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Define

C∗t (s) := sup
at∈At

(
Ct(s,at)+E

[
Vt+1(St+1)|St = s,at

])
(1)

Recall, that St+1 also depends on at = at(s) (which we suppress in the
notation).
The optimal policy can be computed backward by reward iteration. Let
a∗t be a maximizing policy, that is a∗t achieves C∗t in Equation (1).
One can now show that the Bellman equation holds, i.e.

Vt(s) =C∗t (s) t = 0, . . . ,T.

Under an additional (mild) structural assumption, one may verify that
there always exist optimal policies π∗ which can be obtained by
maximizing the value function in each period (Theorem 2.3.8. in Bäuerle
Rieder).
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Algorithm

Step 0 Initialize by the terminal condition VT (ST ) and set t = T −1

Step 1 Compute

Vt(s) = sup
at∈At

(
Ct(s,at)+E

[
Vt+1(St+1)|St = s,at

])
for all s ∈S

Step 2 Decrement t and repeat Step 1 until t = 0
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Infinite-time-horizon

For this case several algorithms exist, to name value iteration and
policy iteration which will not be discussed here, see Powell Section
3.3. ff.
For more mathematical details (and there are many!) we refer to Powell,
Bäuerle&Rieder and the excellent source Bertsekas&Shreve.
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Approximate dynamic programming (ADP)

While we introduce a nice theory beforehand, the core equation

sup
π

Eπ

[ T

∑
0=1

Ct(St ,at)

]
my be intractable even for very small problems.
ADP now offers a powerful set of strategies to solve these problems
approximately.
The idea stems from the 1950’s while a lot of the core work was done in
the 80’s and 90’s.

We have the problem of curse of dimensionality in state space,
outcome space and action space.
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We illustrate this by an example: we approximate the value function by the
function V̄ which we update iteratively.
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The approximation of the value function is optimistic: V̄ = 0 at all states. We
start (forward !) in node 1 and choose the node where

ci j +V̄ ( j)

is minimal. This means we choose 1−3−6−7 and update (!) accordingly:

V̄ (3) = 17, V̄ (6) = 7.
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Now (because we initiated optimistically) we take another round and go
1−2−4−5−7, again updating the weights.
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Now (because we initiated optimistically) we take another round and go
1−2−4−5−7, again updating the weights.

1

2

V̄ = 6 4

V̄ = 4

3

V̄ = 17 6

V̄ = 7

5

V̄ = 1

7
3

1

15

10

7

1

2 3

We have found the optimal path !
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The above example (still a deterministic one) shows a number of interesting
features:

We proceed forward - which is suboptimal, but repeat until we have
found an optimal (or close-to-optimal) solution.
The value function is approximated.
The choice of the initial V̄ can make us explorative or less explorative - it
will become important further on to have this in mind.
Typical examples are the learning of a robot (for example to stop a ball).
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The basic idea

There are many variants of ADP - here we look at the basic idea: we
proceed forward and approximate V̄ iteratively.
We start with an initial approximation

V̄ 0
t (s), for all t = 0, . . . ,T −1, s ∈S .

Then we proceed iteratively.
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Basic ADP algorithm

Starting from V̄ n−1 we proceed as follows:
1 simulate a path S(ω) =: (s0,s1, . . . ,sT ).
2 at t = 0 we compute

v̂n
0 = v̂n

0(ω) = max
a∈A0(s0)

{
C0(s0,a)+E[V̄ n−1

1 (S1)|S0 = s0]
}
.

3 Thereafter, we solve

v̂n
t = max

a∈At (st )

{
Ct(st ,a)+E[V̄ n−1

t+1 (St+1)|St = st ]
}

and continue iteratively until t = T .
4 Finally, we update V̄ by letting

V̄ n
t (s) =

{
v̂n

t , if s = st

V̄ n−1
t (s) otherwise.
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Note that we still need to be able to compute the expectation (from the
transition probabilities). This might be difficult (and for example for a
robo running around in the world, infeasible and unwanted)
We only update V̄ for those states we visit. We therefore need to make
sure that we are explorative enough to visit sufficiently many states
We might get caught in a circle and a convergence proof is lacking.
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Overview

We have three ingredients: model, policy, value-function. Consequently, we
have associated groups: model-free / model-based, value-based and
policy-based.

Model

Policy Value-Function
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Due to the supremum, the Bellman equation is non-linear and a variety
of methods for solving it exist:
Value iteration
Policy iteration
Q-Learning
SARSA

We start with Q-Learning, value and policy iteration typically apply to ∞-time
horizon problems, but will be discussed shortly as well.
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Q-Learning

A first model-free approach is the following:
The Q-learning ADP was proposed in Watkins4 (an interesting read).
The idea is again to approximate the value function. This time we look at
the function Q(s,a) which gives the value of action a when being in state
s, i.e. we are looking for

Q : S×a

This gives an immediate hand on the optimal policy,
a∗(s) = argmaxa Q(s,a).
Again, we proceed iteratively. The assumption we make is that once we
chooce action a we observe the contribution Ĉ(St ,a) and the next state
St+1.
We call an alogrithm greedy, if it bases its decision on the value function.
Assume we are only interested in V0(·).

4Christopher John Cornish Hellaby Watkins (1989). „Learning from delayed rewards“. Diss.
King’s College, Cambridge.
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Q-Learning

Start with an initial Q̄0.
Suppose we are in step n and at position Sn. We choose action an

greedy, i.e.
an := arg max

a∈A (Sn)
Q̄n−1(Sn,a).

We observe Ĉ(Sn,an) and Sn+1.
Compute

q̂n = Ĉ(Sn,an)+ γQ̄n−1(Sn+1,an)

and update with stepsize or learning rate αn:

Q̄n(Sn,an) = (1−αn)Q̄n−1(Sn,an)+αn−1q̂n

= Q̄n−1(Sn,an)+αn

(
Ĉ(Sn,an)+ γQ̄n−1(Sn+1,an)− Q̄n−1(Sn,an)

)
.

Note that no expectation needs to be taken nor any model comes into play.
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A simple implementation just stores the values of Q in a table, which
might be less efficient if the spaces get bigger.
One possibility to solve this issue is to use an artificial network to learn
this function (by the universal approximation theorem this is always
possible), leading to ”deep reinforcement learning” schemes, as
proposed by DeepMind for playing Atari Games.
Other variants concern speeding up the rates of convergence, as in its
current form Q-Learning can be quite slow.
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Implementations

A variety of implementations are available:
Car steering
http://blog.nycdatascience.com/student-works/capstone/
reinforcement-learning-car/

a nice blog by Andrej Karpathy about the Atari game pong
http://karpathy.github.io/2016/05/31/rl/

The R package ReinforcementLearning from N Pröllochs (Freiburg!)5

5https://github.com/nproellochs/ReinforcementLearning
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SARSA

SARSA is an algorithm to estimate the value of a fixed policy, which will
be important, for example, for policy iteration.
The name stems from the following acronym: suppose we are in state s,
take action a, observe afterwards the reward r, go to state s′ and take
action a′.
More precisely, we estimate the value of the policy π by iterating
(infinitely often for convergence) as follows: the policy comes with the
rule Aπ (s) of choosing an action. So starting from state Sn, we choose
an = Aπ (Sn).
Given our transition law, we simulate Sn+1. Naturally, then we choose
an+1 = Aπ (Sn+1) and approximate the value of being in state Sn and
taking action an by the one-step prediction

q̂n(Sn,an) =C(Sn,an)+ γ Q̄n−1(Sn+1,an+1).

Then, we use qn to update Q̄n−1, just as in Q-learning.
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Infinite-Horizon Problems
Starting from the Bellman Equation

Vt(s) = sup
at∈At

(
Ct(s,at)+E

[
Vt+1(St+1)|St = s,at

])
we would intuitively arrive at a infinity-time horizon formulation

V (s) = sup
π

E
[

∞

∑
t=0

γ
tCt(St ,Aπ

t (St))

]
.

Define

Pπ,t =
t−1

∏
s=0

Pπ

where Pπ is the one-step transition matrix given policy π. Then

V π
0 (s) =

∞

∑
u=0

γ
u−tPπ,u−tCt(s,Aπ (s))

=Cπ
0 (s)+ γPπ

∞

∑
u=1

γ
u−tPπ,u−tCt(s,Aπ (s))

=Cπ
0 (s)+ γPπV π

0 (s).
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In simple cases this equation can be solved and we arrive at

V π = (1− γPπ )−1Cπ
0 . (2)
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Value iteration

Very similar to backward dynamic programming we can iterate the value
function to find an optimal solution.

We start with v=0,
for each s ∈S we set

V n(s) = max
a∈A

(
C(s,a)+ γ Es,a[V n−1(S)]

)
and stop if ‖V n−V n−1 ‖ is sufficiently small.

See Powell, Section 3.10.3 for a proof of the convergence.
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Policy iteration

While the value equation starts from the Bellman equation, policy iteration
starts from Equation (2),

V π = (1− γPπ )−1Cπ
0 .

Starting with a policy π0.
Set π ′ = πn−1. We compute cn−1 =Cπ ′

0 (s,Aπ ′) and solve

(1− γPπ ′)V π ′ = cn−1

fir V =V ′. The policy πn is the solution of

argmax
a∈A

(
C(a)+ γPπV ′).

Iterate until convergence.
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Exploration-Expectation

In the search for an optimal policy, we may not always meet all possible
states. One way out of this is to use a randomized strategy, which is called
ε-greedy.

This strategy chooses with probability 1− ε the optimal strategy and
with probability ε a random strategy which allows us to explore.
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Proof of the Bellman equation
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Approximating the value function for fixed π

As already illustrated it is important to approximate the value function
efficiently.
We will always denote by V̂ the approximation (estimation) of our value
function.
If we have a state Sn and the associated estimate V̂ n at hand, we can
update or estimate the V̂ n+1, depending on what method we choose
(again see Powell for numerous such approaches).
We illustrate this once more: for N times we simulate as follows

1 Simulate Sn
0, for t = 0, . . . ,T choose aπ

t = Aπ (Sn
t ), and simulate Sn

t+1 depending
on an

t
2 Given this, we compute V̂ n = ∑

T
t=0 γ tC(Sn

t ,a
n
t )

3 Finally we use (Sn,V̂ n)n=1,...,N to fit V̄ π
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Temporal Differences
A very well-known approach in this regard are temporal differences. We
choose γ = 1 first. Clearly

V̂ n
t =

T

∑
u=t

C(Sn
u,a

n
u)

=
T

∑
u=t

(
C(Sn

u,a
n
u)− (V̄ n−1

u (Su)−V̄ n−1
u+1 (Su+1))

)
+V̄ n−1

t (St)−V̄ n−1
T+1(ST+1)

We use the freedom to set VT+1 = 0 and obtain the nice representation

V̂ n
t = V̄ n−1

t (St)+
T

∑
u=t

δ
π
u (3)

with temporal differences

δ
π
t =C(Sn

t ,a
n
t )+V̄ n−1

t+1 (St+1)−V̄ n−1
t (St).

Using a stochastic gradient algorithm leads to
V̄ n

t (S
n
t ) = V̄ n−1

t (Sn
t )−αn(V̄ n−1

t (Sn
t )−V̂ n

t ) and we arrive (including discounting
now and a time-discount λ ) at

V̄ n
t (St) = V̄ n−1

t (St)+αn−1

T

∑
u=t

(γλ )u−t
δ

π
u .
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The magic of Reinforcement Learning

Its incredible performance in games6:
RL play checkers perfect
Backgammon, Scrabble, Poker superhuman.
They play Chess and Go on the level of a Grandmaster

6See David Silvers lectures
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They produce interesting behaviour and results.
https://www.youtube.com/watch?v=CIF2SBVY-J0

Implementation in R:
http://www.rblog.uni-freiburg.de/2017/04/08/
reinforcementlearning-a-package-for-replicating-human-behavior-in-r/
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