

Stochastische Prozesse

Vorlesung: Prof. Dr. Thorsten Schmidt Exercise: Dr. Tolulope Fadina http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/inhalte/2015WiSeStochProz

Exercise 5

Submission: 17-11-2015

Problem 1 (4 Points). (a) Let $(X_t)_{t\geq 0}$ be a submartingale (respectively martingale) with respect to \mathcal{F}_t , and $\psi : \mathbb{R} \to \mathbb{R}$ be a convex function such that

 $\mathbb{E}[\psi(X_t)] < \infty$ holds for every $t \ge 0$.

Show that, if $\psi(X_t)$ is nondecreasing, $\psi(X_t)$ is a submartingale with respect to \mathcal{F}_t .

(b) Let $(X_n)_{n=1,\dots,N}$ be a supermartingale with respect to \mathcal{F}_n , and let τ, σ be two stopping times. i.e., $\tau, \sigma \leq N$. Show that

$$X_{\sigma} \ge \mathbb{E}[X_{\tau} | \mathcal{F}_{\sigma}]$$
 on $\{\tau \ge \sigma\}$ $P-a.s.$

Problem 2 (4 Points). (a) Show that if $(X_n)_{n \in \mathbb{N}}$ is a non-negative supermartingale, then it converges to an integrable random variable.

Hint: To apply the Doob's martingale convergence theorem (see lecture note), all you need to verify is that the sequence X_n is bounded in L^1 i.e.,

$$\sup \mathbb{E}[|X_n|] < \infty.$$

(b) Suppose $X = (X_n)_{n \in \mathbb{N}}$ and $X' = (X'_n)_{n \in \mathbb{N}}$ are supermartingales with respect to \mathcal{F}_n . Show that $X \wedge X'$ is also a supermartingale.

Problem 3 (4 Points). Consider measurable $\psi > 0$ such that $\frac{\psi(x)}{x} \to \infty$ as $x \to \infty$ and a family of random variables \mathcal{C} . Suppose

$$\mathbb{E}[\psi(|X|)] \le B < \infty \quad \forall X \in \mathcal{C}$$

and constant B. Show that C is uniformly integrable.

Problem 4 (4 Points). (a) Consider $X \in L^1(P)$ and define

 $\mathcal{C} = \{ \mathbb{E}[X|\mathcal{G}] \text{ for sigma field } \mathcal{G} \subset \mathcal{F} \}.$

Show that \mathcal{C} is uniformly integrable.

Hint: Use the following Lemma: If $X \in L^1(P)$, there exist a convex function ψ such that $\frac{\psi(x)}{x} \to \infty$ as $x \to \infty$ and

$$\mathbb{E}[\psi(|X|)] < \infty.$$

(b) Show that a martingale $(X_t)_{0 \le t \le T}$ for $0 < T < \infty$ is uniformly integrable.