Stochastic Filtering (SS2016) Exercise Sheet 12

Lecture and Exercises: JProf. Dr. Philipp Harms

Due date: July 20, 2016

Sequential tests

The following exercises are a guided tour of sequential tests-one of the oldest and most important application of filtering and optimal control theory. For a detailed treatment we refer to [1, Chapter VI.21].

We work on a filtered probability space $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \geq 0}, \mathbb{P}_{\pi_{0}}\right)$ satisfying the usual conditions. The hidden state is a Bernoulli random variable $X \sim \operatorname{Ber}\left(\pi_{0}\right)$ for some $\pi_{0} \in[0,1]$. The observation process $\left(Y_{t}\right)_{t \geq 0}$ is given by $Y_{t}=\mu t X+\sigma B_{t}$, where $\left(B_{t}\right)_{t \geq 0}$ a standard $\left(\mathscr{F}_{t}\right)$-Wiener process independent of X and $\mu \neq 0, \sigma>0$ are given constants.

A sequential test for the hypothesis $X=0$ versus $X=1$ consists of an $\mathbb{F}(Y)$-stopping time T and an \mathscr{F}_{T}^{Y}-measurable random variable \hat{X}. The interpretation is that after stopping at time T, the random variable \hat{X} indicates which hypothesis should be accepted under the test. The objective is to minimize the stopping time and the probabilities of type-I and type-II errors. More precisely, for given constants $a, b>0$, one looks for minimizers $\left(T^{*}, \hat{X}^{*}\right)$ of

$$
\begin{equation*}
V\left(\pi_{0}\right)=\inf _{(T, \hat{X})} \mathbb{E}_{\pi_{0}}\left[T+a 1_{\{X=1, \hat{X}=0\}}+b 1_{\{X=0, \hat{X}=1\}}\right] \tag{1}
\end{equation*}
$$

12.1. Deriving the filtering equation

Let $\left(\pi_{t}\right)_{t \geq 0}$ be the $\left(\mathscr{F}_{t}^{Y}\right)$-optional projection of X.
a) Show that $\left(\pi_{t}\right)_{t \geq 0}$ satisfies

$$
\begin{equation*}
d \pi_{t}=\frac{\mu}{\sigma^{2}} \pi_{t}\left(1-\pi_{t}\right)\left(d Y_{t}-\mu \pi_{t} d t\right), \quad \pi_{0}=\pi_{0} \tag{2}
\end{equation*}
$$

Note: $\left(\pi_{t}\right)_{t \geq 0}$ takes values in $[0,1]$. Of course, the interval $[0,1]$ can identified with the set of probability measures on $\{0,1\}$.
b) Show that $f\left(\pi_{t}\right)-f\left(\pi_{0}\right)-\int_{0}^{t} \mathscr{A} f\left(\pi_{s}\right) d s$ is an $(\mathbb{F}(Y), \mathbb{P})$-martingale for each $f \in$ $C^{2}([0,1])$, where

$$
\mathscr{A} f(\pi)=\frac{\mu^{2}}{2 \sigma^{2}} \pi^{2}(1-\pi)^{2} \frac{\partial^{2} f(\pi)}{\partial \pi^{2}} .
$$

12.2. Reduction to an optimal stopping problem

Show that

$$
\begin{equation*}
V\left(\pi_{0}\right)=\inf _{T} \mathbb{E}_{\pi_{0}}\left[T+g\left(\pi_{T}\right)\right], \quad \text { where } g(\pi)=\min \{a \pi, b(1-\pi)\} \tag{3}
\end{equation*}
$$

Hint: For any fixed stopping time $T, \hat{X}^{*}=\mathbb{1}_{\left\{a \pi_{T} \geq b\left(1-\pi_{T}\right)\right\}}$ is optimal in (1).

Dynamic programming formulation

The Hamilton-Jacobi-Bellman equation associated to the stopping problem (3) is

$$
\min \{\mathscr{A} W(\pi)+1, g(\pi)-W(\pi)\}=0, \quad \forall \pi \in[0,1] .
$$

The relation to the stopping problem will become clear in the following steps.
It can be shown using ODE methods that this equation has a unique ${ }^{1}$ solution W : $[0,1] \rightarrow \mathbb{R}$. The function W is C^{1} and piecewise C^{2}. Moreover, despite the possible

[^0]singularities of W, Itō's formula in its standard form can be applied to the process $W\left(\pi_{t}\right)$. The function W has the following structure: there exist constants A, B satisfying $0<A<$ $B<1$ such that $0=\mathscr{A} W+1$ holds on the interval (A, B), and $0=g-W$ holds on the interval $[0, A] \cup[B, 1]$.

12.3. The function W is a lower bound for V

Show that $V\left(\pi_{0}\right) \geq W\left(\pi_{0}\right)$ holds for all $\pi_{0} \in[0,1]$.
Hint. Show for any $\mathbb{F}(Y)$-stopping time T that

$$
\begin{equation*}
\mathbb{E}\left[T+g\left(\pi_{T}\right)\right] \geq \mathbb{E}\left[T+W\left(\pi_{T}\right)\right] \geq W\left(\pi_{0}\right) \tag{4}
\end{equation*}
$$

The first inequality follows directly from the HJB equation. To see the second inequality, use Itō's formula to express $W\left(\pi_{T}\right)$ as $W\left(\pi_{0}\right)+\int_{0}^{T} \mathscr{A} W\left(\pi_{s}\right) d s+M_{T}$, where M is an $\left(\mathscr{F}_{t}^{Y}\right)$ martingale. Then use the HJB equation to bound $\mathscr{A} W\left(\pi_{s}\right)$ from below.

12.4. The function W is equal to V

a) Show that $\mathbb{E}\left[T^{*}+g\left(\pi_{T^{*}}\right)\right]=W\left(\pi_{0}\right)$, where $T^{*}=\inf \left\{t \geq 0: \pi_{t} \notin(A, B)\right\}$.

Hint. Show that equality holds in (4) with $T=T^{*}$.
b) Conclude that $V=W$ holds identically on $[0,1]$ and that T^{*} is a minimizer of (1).

References

[1] Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary problems.
Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 2006.

[^0]: ${ }^{1}$ The solution is unique in the viscosity sense.

