

# Stochastic Filtering (SS2016) Exercise Sheet 8

Lecture and Exercises: JProf. Dr. Philipp Harms Due date: June 22, 2016

### 8.1. Kushner-Stratonovich and Zakai equation

Let *X* solve the martingale problem associated to  $A : \mathscr{D}(A) \subseteq B(\mathbb{R}^d) \to B(\mathbb{R}^d)$  and let  $dY_t = h(X_t)dt + dW_t$ . Recall that for any bounded measurable function  $f : \mathbb{X} \to \mathbb{R}$ ,  $\rho(f)$  is defined as the  $(\mathbb{F}(Y), \tilde{\mathbb{P}})$ -optional projection of  $\Lambda f(X)$ , where

a) Assume that *h* is bounded. Show that  $\rho(1) = \mathscr{E}(\pi(h) \bullet Y)$ .

Hint: Show that for any bounded stopping time T

$$\tilde{\mathbb{E}}\left[\mathbbm{1}_{T<\infty}\Lambda_T\right] = \tilde{\mathbb{E}}\left[\mathbbm{1}_{T<\infty}\int_0^T \pi_s(h)\rho_s(1)dY_s\right]$$

by applying the martingale representation theorem to  $\mathbb{1}_{T<\infty}$ .

b) Deduce the Zakai equation from the Kushner-Stratonovich equation and a).

### 8.2. Change of measure approach for jump processes

Let *X* solve the martingale problem associated to  $A : \mathscr{D}(A) \subseteq B(\mathbb{R}^d) \to B(\mathbb{R}^d)$  and let *Y* be a Poisson process with rate  $\lambda(X_-)$ , i.e.,  $Y_t = N_{\int_0^t \lambda(X_{s-})ds}$ , where *N* is a standard Poisson process independent of *X* and  $\lambda : \mathbb{X} \to (0, \infty)$  is a measurable function. Assume that  $\lambda$  and  $\lambda^{-1}$  are bounded.



Define a change of measure from  $\mathbb P$  to  $\tilde{\mathbb P}$  via

$$\begin{split} \mathbb{P}|_{\mathscr{F}_{t}} &= \Lambda_{t} \tilde{\mathbb{P}}|_{\mathscr{F}_{t}}, \qquad \qquad d\Lambda_{t} = \Lambda_{t-} \big(\lambda(X_{t-}) - 1\big) \big(dY_{t} - dt\big), \\ \tilde{\mathbb{P}}|_{\mathscr{F}_{t}} &= Z_{t} \mathbb{P}|_{\mathscr{F}_{t}}, \qquad \qquad dZ_{t} = Z_{t-} \big(\lambda^{-1}(X_{t-}) - 1\big) \big(dY_{t} - \lambda(X_{t-})dt\big). \end{split}$$

It can be shown that the law of (X,Y) under  $\tilde{\mathbb{P}}$  equals the law of (X,N) under  $\mathbb{P}$ .

a) Show that  $[M^f, Y] = 0$ , where

$$M_t^f = f(X_t) - f(X_0) - \int_0^t Af(X_{s-}) ds.$$

Sketch of proof: Let  $(T_n)_{n \in \mathbb{N}}$  be a sequence of stopping times exhausting the jumps of  $M^f$ . Under the measure  $\tilde{\mathbb{P}}$ , the process Y is a standard Poisson process independent of X. Therefore, it has no fixed times of discontinuity, i.e.,  $\tilde{\mathbb{P}}[Y_t \neq 0] = 0$ holds for each deterministic time  $t \in \mathbb{R}$ . Together with the independence of  $T_n$  and Y this implies  $\tilde{\mathbb{P}}[\Delta Y_{T_n} \neq 0] = 0$  for each  $n \in \mathbb{N}$ . Thus,  $M^f$  and Y have no common jumps and  $[M^f, Y] = 0$ .

b) Derive the Zakai equation, i.e.,

$$d\rho_t(f) = \rho_t(Af)dt + (\rho_{t-}(\lambda f) - \rho_{t-}(f))(dY_t - dt).$$

Hint: You can use exactly the same steps as in the lecture, where Zakai's equation was derived for observations with additive Gaussian noise.

#### 8.3. Singular filtering and stochastic volatility

This example shows why one typically assumes that the volatility of the observational noise does not depend on the signal process X.

We work on a filtered probability space  $(\Omega, \mathscr{F}, \mathbb{F}, \mathbb{P})$  satisfying the usual conditions. The signal is a càdlàg,  $\mathbb{F}$ -adapted,  $\mathbb{X}$ -valued process *X*. The observation process *Y* satisfies  $Y_0 = 0$  and

$$dY_t = h(X_t)dt + \sigma(X_{t-})dW_t,$$

University of Freiburg



where *W* is a standard  $\mathbb{F}$ -Wiener process,  $\sigma : \mathbb{X} \to [0,\infty)$  and  $h : \mathbb{X} \to \mathbb{R}$  are both continuous.

a) Suppose  $\mathbb{X} = [0,\infty)$  and  $\sigma$  is bijective. Derive an expression for the filter  $\pi$ .

Hint: Show that *X* is  $\mathbb{F}(Y)$ -adapted.

b) Let T > 0 be fixed and consider an increasing sequence  $(A_n)_{n \in \mathbb{N}}$  of finite subsets of [0,T] such that  $\bigcup_{n \in \mathbb{N}} A_n$  is dense in [0,T]. Suppose that the process *Y* from a) is observable only at the time-points  $t \in A_n$ . Let  $\mathscr{G}_n$  be the (augmented)  $\sigma$ -algebra generated by  $\{Y_t : t \in A_n\}$ . Show that for any bounded *f*, we have

$$\lim_{n\to\infty}\mathbb{E}[f(X_T)|\mathscr{G}_n]=\pi_T(f)\quad\text{a.s.}$$

Hint: Apply Doob's martingale convergence theorem.

c) Compare the results of this exercise to Exercise 7.4. Give a mathematically precise interpretation of the following sentence: "High-frequency data allows one to estimate volatilities, but not drifts."

## 8.4. Singular filtering of a two-dimensional process

This is an example of a singular filtering problem with an explicit solution. Consider the setting of Exercise 8.3 with  $\mathbb{X} = \mathbb{R}^2$ , h(x) = 0,  $\sigma(x) = ||x||$  for  $x \in \mathbb{R}^2$ , and X is a 2-dimensional standard Wiener process independent of W. Calculate the filter of X given Y.

Hint: Show that  $\pi_t$  is a spherical distribution on  $\mathbb{R}^2$ , i.e.,  $\pi_t(f) = \pi_t(f \circ U)$ , where  $f : \mathbb{R}^2 \to \mathbb{R}$  is bounded and U denotes multiplication by an orthogonal  $2 \times 2$  matrix. Use that any spherical distribution on  $\mathbb{R}^2$  can be represented as the law of *RS*, where *R* is a random variable with values in  $[0, \infty)$  and *S* is uniformly distributed on the unit sphere in  $\mathbb{R}^2$ , independent of *R*.