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APPROXIMATE EXIT PROBABILITIES FOR A BROWNIAN
BRIDGE ON A SHORT TIME INTERVAL, AND
APPLICATIONS

H. R. LERCHE,* University of Freiburg
D. SIEGMUND,** Stanford University

To Henry Daniels on his 75th birthday

Abstract

Let T be the first exit time of Brownian motion W(f) from a region ® in
d-dimensional Euclidean space having a smooth boundary. Given points §; and &, in
R, ordinary and large-deviation approximations are given for Pr{T <e|W(0)=
&, W(e)=&,} as e 0. Applications are given to hearing the shape of a drum and
approximating the second virial coefficient.

FIRST PASSAGE; HEARING THE SHAPE OF A DRUM

1. Introduction

Let W(t), 0=¢ <=, denote Brownian motion in R with W(0) = &,. For ¢ >0 and
events A in the o-algebra generated by W(s), 0=s5 =1, let

PE) (A) =Pr(A | W(0) = &, W() = £)).

Assume that &, and &; belong to some region % with a smooth boundary 4, and let
T denote the time W first leaves R, i.e., T =inf {t: W(f) € O%R}. The principal
subject of this paper is the asymptotic behavior of

1y PE (T <1)

as t—0 and the &; are at a distance O(#3) from each other and from 3%. A
secondary consideration is the case where the distances of the & to the boundary
and each other are fixed as r— 0. '

This problem for d =2 and &,= &, arises naturally in the beautiful paper of Kac
(1966), who was interested in the relation between the geometry of & and the
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eigenvalues of the Laplacian, and was led to consider the behavior for small ¢ of

1.2) 2. exp (),

where the A, are eigenvalues of the Laplacian acting on functions having domain %
and vanishing on d%R. For &, &, € & define p(¢, &,, §,) by

p(t, &, £ dE =Pr(T >t, W(t) e dE, | W(0) = &),

and observe that
(1.3) p(t, Eo, Eo) = (2mt)~ 41 — zggg, AT <t}

In order to study (1.2) in a bounded region # in R> Kac starts from the
representation

S exp (~ht) = [ [ &, &) d
R
which by (1.3) equals
(14) Q|19 - [ [ PQa(T<1) do),

where || denotes the area of &. He then in effect obtains the asymptotic relation
(1.5) PRAT <t} ~exp (=28/1) (& 0—>0),

where y, is the distance of &, to the boundary 8%. (This relation has the
interpretation that to a first approximation the conditional probability of leaving &
during a short time interval equals the conditional probability of crossing the tangent
to AR at the point closest to &,.) From (1.4) and (1.5) Kac obtains

(1.6) “> exp (—At) = 2mt) L |R| ~ [4Qm):] 7 |BR| + o(t72)

as t— 0, where |6%| denotes the length of 3. By a piecewise linear approximation
to-8R combined with a substantial calculation Kac argues heuristically that the next
term in the expansion (1.6) should be (1 — A)/6, where h is the number of holes in
R. For various complements to these results see Louchard (1968), McKean and
Singer (1967), Stewartson and Waechter (1971), and Smith (1981). Of these, only
Louchard attempts to carry out Kac’s program of a probabilistic analysis, and his
argument appears to contain an improper use of the Markov property.

Starting from the physical problem of evaluating the second virial coefficient of a
hard sphere gas, Handelsman and Keller (1966) arrive at essentially the same
mathematical problem as Kac, for the case d =3, §, = &;, and & the region exterior
to a sphere. They derive what in Kac’s problem corresponds to the next two terms in
(1.6). Although their method does not seem capable of being turned into a rigorous
proof, minor modifications appear to produce correct answers under much more
general conditions.
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In this paper we use methods borrowed from sequential analysis to obtain in
Theorem 1 the first term in an Edgeworth-type expansion of (1.1) as t— 0 with the -
g at a distance O(t7) from SR and from each other. Theorem 2 gives a
large-deviation approximation as ¢t— 0 while &, and &; remain fixed. Theorem 3 is
concerned with the substantially more complicated second Edgeworth term. For
computational simplicity only the case &,=&; is considered, but this is the case
which arises in both the Kac and Handelsman-Keller problems. These results make
it possible to complete Kac’s program and obtain by probabilistic methods the
expansion

1.7) > exp (—At) = Qmt) "z |R| ~ [4(2m)%]-1 16|

+(1— h)/6 + 275 2m) "4t} f (0) do + o(t}),
3R .

where |R|, [0%], and h are as defined above, o denotes arc length on 8%, and c(0) -
is the curvature of % at o. One can similarly obtain the Handelsman—Keller
expansion. See Section 4. ‘

We begin in Section 2 by collecting together a number of technical results which
will be used later. The reader may wish to proceed directly to Section 3 and refer
back to Section 2 when needed.

2. Preliminaries

This section summarizes a number of basic results which are used in what follows.
Lemmas 1, 2, and 4 are well known. The notation used here is not always consistent
with the rest of the paper. :

- Let W(t)=(Wy(2), - - -, Wy(t)), 0=t <, be standard Brownian motion in R,
and let %(t) denote the o-algebra generated by W(s), s =t. Let

POA)=PrA|W()=8) (Ae%F()).

In Sections 3-5 we shall want to assume W(0) = §,+# 0. The results given below are
easily adapted to that case by a translation of the origin.

Lemma 1. Let t>0 and §+# &'. For all s<t the restriction of P® to F(s) is
absolutely continuous with respect to P{) so restricted and has likelihood ratio
(Radon-Nikodym derivative) given by h .

12,558 §) =exp{[(§ — &, W(®)) —s(I&I* - I18"I1")/2e)/ (t - 5)}.
Hence for any stopping time T and A € #(T)
POIANAT <t}] = EQU(:, T; & &) AN{T <1}].

Proof. This is a version of Wald’s fundamental identity of sequential analysis. See
Siegmund (1985), p. 39.
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Let b >0 and define 7 = 1, = inf {¢t: Wy(¢) = b}.
Lemma 2. For arbitrary t>0 and £= (&%, - - -, E%) e R?
PO{r <t} =min (1, exp[~2b(b — E')/1]).
For |E'|<b

Pé"{n;;;c [Wi(s)| = b} =< exp [-2b(b — £")/¢] + exp [-2b(b + EV)/1].

Proof. The equality (in the non-trivial case £'<b) follows immediately from
Lemma 1 if one puts &' =(2b— £, &%, - - -, &%) and observes that 2b — E!> b, so
PQ{tr <t} =1. The inequality follows from the equality.

Lemma3. For0<t<1land §= (), ---, %) e R? the P’ density of 7 is given by

@ wasapele (F) -e-n())

As t—0, PO{1 <t} = Olexp (—b?/4t)]. For E'>b
EL(7) = b®(—E")/ p(E")

and

EQ[7*/(1-1)] = b/(§' = b) - b&(-E)/ p(&).
Here ¢ and < are the standard normal probability density and distribution function,
respectively.

Proof. We have
PP{r<t) =EPPO{r<t| W(®)}].
The conditional probability equals P%’V)(,){r <t} and is given by Lemma 2. Integra-
tion with respect to the P{’ distribution of W(r) followed by differentiation with
respect to ¢ yields (2.1). The asymptotic behavior of P{{r =t} as t—0 is easily
obtained from (2.1).
From (2.1) one also obtains

EP[P?/(1-1)]=b f ws‘%(l +5) '@[(E' — b)/s* — bs1] ds.

Writing (1+s)™' = [§ exp (—«(1 +5)) de, interchanging orders of integration and
using the well-known equality

| emas ip(ar - s ds = exp (~al2ar + 2t~ ]}
(>0, >0, —o<pu<x) (e.g. Siegmund (1985), (3.16) and Problem 3.1), one

obtains the indicated expression for E{’[t?/(1 — 1)]. A similar calculation applies to
EQ (7). '
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Lemma 4. Let (Q, 9, P) be a probability space and {¥(¢), 0=t <t} a family of
sub-o-algebras of 4. (i) If E|Z| <, then {E(Z| %(t)),0=t<¢,} is uniformly
integrable. (ii) Suppose {Z(1), 4(t), 0=t <t} is a right-continuous submartingale
and that S and T are stopping times. If P{T <t#,} =1, E|Z(T)| <, and

liminf E(Z*(t); T >1t)=0,

then E(Z(T) | 9(S)) = Z(S) a.e. on {T > S}.

Proof. These results are essentially standard martingale theory. Although we
could not find them in exactly the form we require, almost any discussion of
martingale theory contains similar results and the essential ideas for a proof. Part
(ii) is known as Doob’s optional sampling theorem (cf. Logve (1963), pp. 530-535).

Lemma 5. For each t>0 and —o< & <o, {[Wi(s)—t &)/t —s), F(s), 0=
s<t} and {[W(s)—tSEP/(t—s)?—t7's/(t —5), F(s),0=s<t} are PP-
martingales. :

Proof. Let 0<s,<s,<t. It is easy to show that the conditional distribution of
W(s,) given F(s,) is normal with mean (s, —s,)[& — Wi(s1)]/(t —s;) and variance
(52— s)[1 — (s, — 51)/(¢ —s1)], from which the lemma follows by direct calculation.

Lemma 6. Let E*>b. Then E(;)[‘L'/(l —1)]=b/(E' - b).

Proof. It is possible to obtain this result by a direct calculation, starting from
(2.1). More simply, one can use Lemmas 4 and 5 to obtain

EEL[1/(1 - 1)] = EOW(D/(1— 9)] =bEP[1/(1 - 1)) = b + bEL[t/(1 - 7)),

Lemma 1. Let &,>b, so Pg){r<t} =1. Given Wys), 0=s=1, the Pg)
conditional joint distribution of W(7), 2=i=d, is that of [7(1 - T/ORZ + 18,
where Z,, - - -, Z, are independent standard normal variables.

Proof. For fixed s <t, the PY joint distribution of W(s), 2=i=d, is that of
[s(1 —s/0)]2Z; + sE'[t, where the Z, are independent standard normal and independ-

ent of Wy(-). Since 7 is defined in terms of W,(-), the desired result follows
immediately.

Lemma 8. Assume b—> ©, E'— = in such a way that b/&" converges to some fixed
value in (0, 1). Then

PPO{r —b/E = x[(b/(E'))(1 - b/EM]}} - @(x),
where ® denotes the standard normal distribution function.

Proof. One can prove this result by a direct computation starting from (2.1). A
more general argument, which will be useful in the proof of Theorem 2 is given by
Siegmund (1968).
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3. Approximations to P . (T <1}

For ease of exposition we consider in detail only the case d =2 and indicate in
some remarks how the results are modified for general d.

Given &, & € R<R?, close to 8% and to each other, assume there exists a
unique point on R the sum of whose distances to the given points is a minimum.
Consider the Cartesian coordinate system which has this point as its origin, the
x-axis as tangent and the y-axis as outward normal to %&. There exists a function
y =f(x) such that locally near (0,0) 3% is given by the graph (x, f(x)). Let & have
coordinates (x;, y;) in this coordinate system, and assume that y, <0 (i =0, 1). It is
easily seen that &, and &, satisfy —xo/|yol =x1/|y:|. (A ray of light emanating from
&, and reflecting off the x-axis at the origin passes through &;). Let W(t) denote
Brownian motion starting from W(0) = &;, and define

(3.1) T =inf {t: Wo(t) ZF(Wi(0)))}-

In general, T is not the exit time of W from %, but for &, close to (0, 0) it is w1th
probability close to 1. (A more precise estimate is given below.)

In order to study P&: {T < €} it is convenient to use Brownian scaling to replace
the glven problem on the time interval [0, £] by an equlvalent one on [0, 1]. Since

W{(et)/ ¢} is Brownian motion starting from Eo= Eo/ 3, it is easy to see that

(32) PO (T <e}y=PLe{T <1},
where & = &,/e% (i=0, 1) and
(3.3) T =T, = inf {t: Wy(t) Z e} (e:W,(2))}.

To give a precise statement of our first result it is convenient to change our
viewpoint slightly and regard f as given and the points &; as variable.

Theorem 1. Assume f is twice continuously differentiable, f(0) =f'(0) =0, and
F"(0)+#0. Suppose & =(x;,y;) (i=0,1) satisfy y,<0 (i=0,1) and —xo/|yol=
x1/|yil, and converge to (0,0) as é—0 in such a way that E =&/t are fixed
(=0, 1). Then for T defined by (3.1)

PR(T < e} = exp (~2on/&){ 1= /O) e o
(3.4
®[(yo +y1)/ 7]
@l(yo+y1)/ €]
where ® and ¢ are the standard normal distribution and density function
respectively.

(1~ —x0)) + e 0l + 2 ) +o(eh) ||,

Proof. By virtue of (3.2) it suffices to consider the standardized problem on the
time interval [0 1], with- fixed initial and terminal points Ey= (%o, ¥o) and & =
(%1, 71), and T defined by (3.3). To simplify the notation we consider only this
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standardized problem and omit the tildes for the rest of the proof. In this new
notation, where all variables have tildes, but the tildes are omitted, (3.4) becomes

PRAT, <1} =exp (20301 = 7O 1yox

D(yo +y1)
x e e .
@(yo+y1)

(3.5)
(L= G =x0) + @ Il + 5% 1yol) + 01

with T, defined by (3.3).

We begin with an informal calculation to convey the main ideas and provide a
justification later. The argument proceeds from a suitable likelihood ratio identity.
Let &1 = (x1, |y1]). The likelihood ratio of W(s), s =¢, under P{). relative to Py,
is easily calculated to be (cf. Lemma 1)

exp (=2 |yoyi|) exp [—2 | y:| Wa(8)/(1 — B)].
Thus since Wy(r) = £~ 3f (¢!W(T)), we have, again by Lemma 1,

=2 |yl F(EEW(TN T,
e(1—-T) ]”T<1}'

(36) PRA(T <1} exp @ 130l) = Ee]exp [ =
Since
(3.7) e73f (eix) ~ e¥f"(0)x*/2—0 (£—0),

for all sufficiently small &, P{;)z.{T <1} =1, and the right-hand side of (3.6) can be
expanded to become

(3.8) 1=yl e OELe[WHT)/ (1= T)] +- - -.
Define

3.9 v =inf {t: W,(z) Z0}.

From (3.7) follows Pg)) g{T.— 7} =1, and hence (one expects thgt)

(3.10) EQeWHD)/(1 - T)]—> EQg[Wi(r)/(1 - 7)].

By Lemma 7 conditional on Wa(¢), t = 7, W(7) is distributed as [t(1 — 7)]Z + x, +
(x; —x¢)T, where Z has a standard normal distribution. Hence

(3.11) E‘st’g.[WZ(r)/(l—r)]-x%+(1+2xox1 XDEL) () + XIEL) o [v*/(1 - 1))

Equation (3.5) follows from (3.6), (3.8), (3.10), (3. 11) and the evaluations given in
Lemma 3.

To make the preceding manipulations into a proof, one must consider the
remainders in (3.7) and (3.8), and justify the convergence indicated in (3.10).

Let { = (log €)* and A = {max,<; |W;(¢)| = {}. From the inequality in Lemma 2
one obtains

PEe(A%) + PR (A) = o(&?).
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Let0<7n<|y]andt;,=1—§ 7. Also let
(3.12) 7, = inf {t: Wy(r) Z b}.

(Note that (3.9) is the special case b =0). For all ¢ sufficiently small |f (eix)|/e1=q
for all |x] = ¢. Hence by Lemma 3

PRl <T<1) N A]S PR, { max W0 >—n

=P (T <L}
= O(exp [— (Il — n)*C7/4])
=o(&%).
Similarly, P [{t, <T <1} N A] = o(&®). Hence (3.6) can be replaced by
PE) e {T <1} exp (=21301l)

3.13 _ !
(3.13) ~ B e " 2|y81%l(f1(i;V)1(T))

Let 6 > 0. By two applications of Taylor’s theorem with remainder along the lines
suggested in (3.7) and (3.8) one can obtain upper and lower bounds for the
right-hand side of (3.13) in the form

(3.14) 1=yl &lf"(©0) £ SIEQe[WAT)/(1 ~ T); {T <t:} N A] +0(&%).¢

Since & >0 is arbitrary, by (3.11) and Lemma 3 it suffices to show (cf. (3.10))
(3.15)  EQu[WHT)/(A-T){T <t} NA]—> EQx[Wi()/(1- 1)),

where 7 is defined by (3.9). By (3.7) P {T.—> 7} =1, and Py o ({T <t,} N A)—
1. Hence to prove (3.15) it is sufficient (and necessary) to show that

(3.16) {Lir<iynaWHT)/(1 - T); £ >0}

is uniformly 1ntegrable

For all sufficiently small &, since f(eix)/e?<n for all |x|<{, Ac{T<rt,}. By
Lemma 5 [Wi(f) —xo— (xi—xo)t/(Q—t—t/(1—t), 0=t<1, is a Py
martingale and since £+>t/(1—¢) is increasing, [Wi(f) —xo— (x1—xo)tP/(1 -1y,
0=t<1, is a submartingale. By Lemma 7

EQ:{[Wilz,) = Xo — (81— X0) T, /(1 = 7%} = EQg[7,/ (1~ 7)),
which is finite by Lemma 3. Also
ED e {[Wilt) — x0— (61 — xo)t P/ (1 = 65 7, > 1} = t(1 = ) T'PE)gy {7, > 1} >0
as t— 1, again by Lemma 3. It follows from Lemma 4(ii) that on {T <t,}
[Wl(T) —xo— (x1 —x0) TF/(A—TY
= EQ e {[Wi(z,) — X0 — (61 — x0T, P/(1 — 7,)* | W(®), t=T}.

]; {T <t} ﬁA} + 0(82).
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Hence by Lemma 4(i) {1(r<. [Wi(T)—xo— (x1—x0)TF/(1 — T)? £>0} is uni-
formly integrable. The uniform integrability of (3.16) now follows from the relation
A c{T <1,}, the inequality (a + b)*=2(a’ + b*), and Lemma 3.

Remarks. (i) As observed above, the boundary of & can be defined locally near
(0,0) by a function y =f(x), but in general it cannot be so defined globally.
However, for ¢ sufficiently small, on {max,z,=, |W;(?)j < Cei}T defined by (3.1) and
the exit time from % coincide, so there is no loss of generality restricting attention
to stopping times of this form. (i) In higher dimensions, f” in (3.4) becomes the
Laplacian Af, and x7 (i=0, 1) and (x; —x,)* become Euclidean distances ||x;]|?
(=0, 1) and ||x; — x,||*>. The proof is essentially unchanged.

In Theorem 1 &, and &, are at a distance O(¢?) from the boundary of # and from
each other, and consequently P(Ej?EI{T < g} converges to a limit between 0 and 1.
Theorem 2 is concerned with the case that &, and &, are fixed as €¢—0, so
PR {T <e}—0.

As above, for given &, &§; € & suppose there exists a unique point on R, the sum
of whose distances from &, and &, is a minimum, and consider the tangent-normal
coordinate system through this point. Let §; have coordinates (x;, y;) (i =0, 1), and
let % be given by the graph of (x, f(x)) in some neighborhood of (0,0), so

f@=f'(0)=0.

Theorem 2. Assume f is twice continuously differentiable, y,y, >0, and

(3.17) 29001 f"O)[1 + (e1/y)*V 1yo + 3| > —1.
Let T =inf {t: W(¢) € SR}. Then as e—0

. exp (=2 'yoy1)
{14 2y0y: F"O)1 + Gea/¥1)2 |yo + 31}

One can prove Theorem 2 along the lines of the proof of Theorem 1, but the
details are rather different. To keep this paper to a reasonable length the proof is
only sketched. See Siegmund (1982) for a somewhat similar argument. An example
comparing the numerical accuracy of (3.18) and (3.4) is given in Section 5.

An interesting case which fails to satisfy the conditions of Theorem 2 is & a disk
with &, =&, at the center. In this case, the nearest point on 8% is not unique and
(3.17) is not satisfied. For an approximation in this case, which leans heavily on
rotational symmetry, see Siegmund (1985), Problem 11.1. An exact expression
involving infinite series of Bessel functions has been obtained by Kiefer (1959).

(3.18) PL (T <e)

Sketch of the Proof of Theorem 2. We again consider the equivalent standardized
problem on the time interval [0, 1], but in this case it is helpful to distinguish
between the original variables &; = (x;, y;) and the scaled variables £ = £,/¢2, as well
as between T defined by (3.1) and T defined by (3.3). Our starting point is again
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(3.6) which we write as

2 |y1|f(s%W1(T))]; <1},

3.19) PO, {T<elexp(2 =E0>—,{ [ M
( ) R }exp (2yoyil/€) &, E1) €XP e(1- 1)

where & = (x1/ ¢}, |pil/€?).

Let t* =|yol/|yo + 1| and observe that E(l) W (@E)] = (O 0). Let 7 be defined as
in (3.9). By Lemma 8, in P— g,-probability 7 —t* = O, (82) By an argument similar
to that given in Siegmund (1968) and cited in the proof of Lemma 8, we also have
T-t*=0, (82) Since W(¢) drifts at a rate no greater than &7}, we have
Wy(T) = Wl(t*)+Wl(T) Wi(t*) = O,(1). Hence by (3.7) the right-hand side of
(3.19) has the same limiting value as

(3.20) EQ g{exp [-Inl fOWKD)/(1- D)} T <1).

Since W(¢) drifts at rate £7%, it follows from (3.7) that T —v=0,(¢). Hence
Wi(T) — Wi(r) = Op(s‘%)Op(s) =0,(¢3). In particular the limiting behavior of
(3.20) is the same as that of

(3:21) EE)g{exp [~y f(OWi(R)/(1 - 7)1}

Conditioning on 7 and appealing to Lemma 7, one finds that (3.21) equals

Lyl £(0) (s {z/(1 — )} + xo{(1 — 7)/7}? )2]}
e{1+2|nlf"(0)z}
A Taylor series expansion of this function of 7 about ¢*=| Yol /(Iy| + Iyol), the

observation that x,(¥o/y1)? +x1(y1/¥)? =0, an application of Lemma 8, and some
messy calculations yield (3.18).

EQ {1+ 2100 @] exp [ =

Remarks. (i) Although the proof of Theorem 2 shows that both 7 and T converge
in probability to ¢*, and W,(7) and Wy(T) are asymptotically equivalent in law, their
common limiting distribution is not that of W;(¢*) unless §,= Ey:

(ii) A related but somewhat more complicated problem than that discussed in
Theorem 1 is to approximate the joint distribution of (T, Wi(T)), which can be
attacked via the characteristic function '

(3.22) ' E$): [exp {iMW(T)/e* +iA,T/e}; T <el].

Expansion of (3.22) to the precision of Theorem 1 seems to require more
complicated calculations, which turn out to be very similar to those given in the
following section in order to obtain the term of order ¢ in the expansion of
PE{T <e}.

(iii) It seems possible to obtain the results of this section by the methods of
Jennen and Lerche (1981), (1982), but the computations appear to be somewhat
more complicated. If one is interested in the joint behavior of T and Wi(T), their
method might turn out to be the simpler one.
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4. The term of order ¢ and applications

Calculation of higher-order terms in the expansion (3.4) rapidly becomes very
complicated in detail. In this section we see what is involved by examining the term
of order £. (See Equation (4.10).) To simplify the algebra we suppose that &, = &,.
This special case suffices for applications to the problems of Kac (1966) and
Handelsman and Keller (1966), which are discussed below. We proceed informally
as in the first part of the proof of Theorem 1. The localization and uniform
integrability arguments necessary for a rigorous proof are similar to those in
Theorem 1 and have been omitted.

Let &, = ;. In the notation of Section 2 for the standardized problem on the time
interval [0, 1], (3.6) becomes

—2 I):%I(J;(ifyvf’)l(T))]}’

where &, = (0, yo), §o=(0, Iyol), and T =T, is defined by (3.3). Assuming that f is
three times continuously differentiable, we have

£7if(e3x) = 3f"(0)x*/2 + ef"(0)x>/6 + o(¢);
and hence the right-hand side of (4.1) becomes
1= &} |yol FOEL [ WHT)/(1 = T)] = 32 |yl 'OV EL 5[ WHT)/(1 = T)]
+3eyif(OPES) [ WH(T)/(1 — TY] + o(e).
Until further notice, we shall write P and E for P{),, and EY),.. Recall the
definition of 7 given in (3.9) and note that by Lemma 7 the conditional distribution

of Wi(r) given 7 is normal with mean 0 and variance 7(1- 7). By (3.7)
P{T.,— t} =1 (¢—0), and hence

@) PRT <1} exp(d) = EQsfexp |

(4.2)

4.3) E[W(T)/(1-T)]—0
and

(4.4) E[W{(T)/(1— T)*}—3E7,
Also

(4.5) E[WN(T)/(1-T)]=Er+{E[Wi(T)/(1-T)] - E[W(z)/(1 - D)]};

and the final contribution to the term of order ¢ in (4.2) comes from the difference
on the right-hand side of (4.5), which is itself of order &2.

First suppose that f"(0) <0 and to simplify some details that f(x) =0 for all x.
The case f"(0)>0 involves a similar argument with slightly more complicated
calculations. Let &% denote the o-algebra generated by W(s), s =¢. Since T =1, we
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have
EIWA(D)/(1 - 9] = E[(W(T) + Wa(x) ~ W(T)F/(1 = )]
o) = £ WD 26D g ) - w1, <)

+ (1 - D) E[(Wi(z) — W(T)Y? | Fr, 7]}

Conditional on %, and t, by Lemma 7 W(t) — Wi(T) is normally distributed with
mean —Wy(T)(v—T)/(1—T) and variance (v—T)(1—17)/(1—T). Hence after
some algebra one obtains

E[WI(D)/(1 - T)] - E[Wi(r)/(1 - )]

“7) =E[1-T)*WXT)E(x—T | F)|—-E[Q—-T)'E(x—T | %)}

By Lemmas 4 and 5
E{(1 - 7)7'[Wa(7) = Wa(T) — (z =~ T)(Iyol = WoT))/(1 = T)] | Fr} =0
and hence with probability 1 as e—0
o SO WA -T)
“.8) BT %0~ 13 oy Wi
~3e2 yol 7 f"(O) Wiz)(1 - 7).
Substitution of (4.8) into (4.7) yields
E[WI(T)/(1-T)] - E[WH(»)/(1 - 7)]
~3e |yl I OH{E[Wi(2)/(1 - 7)] - EW3(2)}
(4.9) =34&3 |y If"(0)| (BE[+*(1 — )] - E[(1 - D)]}.

From (4.1)-(4.5) and (4.9) we obtain the following expansion in the case
f(0)<0.

Theorem 3. If f is three times continuously differentiable and f(0) =f'(0) =0,
then

(4.10) PE (T <1} =exp (~29){1 — &t |yol f"(OEL g,(7)
+3e[f"(OFEL [37°(1 — 7) — 7(1 — 7) + 3y87°] + o(e)},
where T is defined by (3.3), T by (3.9) &, = (0, y,), and ;= (0, |yo)-

The proof of (4.10) is slighly different when f”(0) > 0. In this case T= T, so (4.6)
must be replaced by

E[WXT)/(1-T) = E[Wi(z)/(1-T)]

Wi(T) — Wi(2)
1-T

) o] D

=)

+ ZE{Wl(r)E[
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By Lemmas 4 and 5

[ BT = Wi

L= g = —a- 0 W@EIT - i -1)| %]

and it may be shown that
E{[W(T) - W(D)F/1-T) | %} ~ E[(T - 0)/(1 - T) | ).
Hence in place of the equality (4.7) one obtains
E[Wi(r)/(1— )] - E[WHT)/(1 - T)]
~E[(1- ) *Wi(E(T — © | %)] - E[(1 — 1) E(T — 7| %)
A result similar to (4.8) holds for E(T — 7| %,), and the rest follows as before.

Remarks. (i) By the method of Lemma 3 one can evaluate the moments
appearing on the right-hand side of (4.10). However, for the applications given
below, which in effect involve an integration of (4.10) over &,, the computations are
considerably simpler if one interchanges the order of the two integrations and
integrates over &, first. (ii) In higher dimensions the relation of 9% to its tangent
planes can be more complicated than in two dimensions. In general, one must
condition on %7, and consider the two cases {T =7} and {T > t}. Whereas the
term of order &2 involves only the Laplacian of f, i.e., the mean curvature of 3%,
the term of order ¢ involves a quadratic function of the mean and Gaussian
curvatures. For the problem studied by Handelsman and Keller (1966), where R is
the region exterior to a sphere in R* one does not encounter these complications.

Now let T denote the first exit time of W from R, and for &,, £, € ® define

p(t, &, &) by
p(t, Eo, §) d& =Pr(T >t, W(t) e dE, | W(0) = &).

Recall from Section 1 that Kac’s (1966) problem involves the behavior for small ¢ of
(4.11) 3 exp (=) = @aty 190 - [ [ PQ(T <1} d |
J _

where || denotes the area of ®. Handelsman and Keller (1966) are interested in
R? and the integral

[[[ 1= @mioc &, ez,
R
which by (1.3) equals

(4.12) f f f PY T <t} d&,.
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In order to analyse the integral in (4.11) it is convenient to make a change of
variables to obtain

I
(4.13) f f PR (T <t} d&o= f J' PO (T <t}[1— |yol c(0)] d | yol do + O(e™*™),
3R Y0
R

where o denotes arc length on 3R, c(-) is the (signed) curvature of 3%, and &, has
coordinates (0, yo) in the tangent—normal coordinate system with its origin at the
point o of 32, so |yo| is the distance from &, to % and c(0) = —f"(0). (The change
of variables from &, to (&, y,) has Jacobian 1 + yoc(o) under our convention that the
positive y, axis is an outer normal to 9%, provided 6 is small enough that
8 max, |c(0)] <1. The derivation is a straightforward application of the Frenet-
Serret equations for plane curves. See, for example, Millman and Parker (1977), pp.
30 and 52.) A

Keeping (2.1) and (3.2) in mind, one can substitute (4.10) into (4.13), integrate
with respect to |y, then with respect to o, to obtain an expansion of Y. exp (—Af).
Since c(0) = d6/do, where 0 is the angle between the tangent to 9% and some fixed
direction, it follows that [ 54 c(0) do =2x(1 — h), where h is the number of holes in
. (This is a special case of the turning tangents theorem of plane differential
geometry. See Millman and Parker (1977), Section 3.2.) The result is (1.7).

The expansion (1.7) agrees with those given by Stewartson and Waechter (1971)
and Smith (1981), both of whom used analytical methods and obtained additional
terms. The term of order ¢* disagrees with that given by Louchard (1968), whose
argument appears to contain an improper use of the Markov property.

Since (1.7) involves termwise integration of (4.10), some additional justification is
required to claim that (1.7) has been proved rigorously. (Previous authors are about
equally divided between those who concern themselves with this justification and
those who do not.) In order to indicate the general nature of the argument, we
sketch a justification of (1.7) with a remainder of o(1), but we have not attempted
the substantially more technical calculation required to include the term of order &,
We summarize the result as follows.

Theorem 4. Let & be a bounded region in R? with a twice continuously
differentiable boundary 8%. Let {A.} denote the cigenvalues of the Laplacian
operating on functions with domain % which vanish on 3%&. Then as t—0

> exp (—Axt) = (2t) 7 |R| — [4(27)3] 71 18R]+ (1 — h)/6 + o(1),

where |%| is the area of &, |9%R| is the length of dR, and 4 is the number of holes in
R.

The change of variables , = yo/t? in the integral on the right-hand side of (4.13)
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yields
. s .
[ 7 PRAT <11 - A inl @ d sl do,
a® Jo

where T, is defined by (3.3). As in the proof of Theorem 1, we henceforth omit the
tildes from our notation and write ¢ instead of ¢. Hence by (4.11) and (4.13) our
problem reduces to that of evaluating

66—%
(4.19) [ [ PRur <111 = &t 1yal (o)l d 3ol do

with a remainder equal to o(g?) as £— 0. For this it would be more than enough for
the expansion of Theorem 1 to hold uniformly in £, throughout the range of
integration. It seems difficult to justify such uniformity for y, close to 0. We shall
indicate the proofs of three weaker results which are easily seen to suffice. Recall
that ¢ = (log £)*

Lemma 9. (i) For arbitrary y >0, the expansion -(3.5) with &,=§, holds
uniformly in &, such that log £ <y, < —7v. (ii) Uniformly in &, for which deTi<y,<
—¢3
(4.15) PR AT <1} = exp (—2y5)[1 + O(e* | ).

(iii) Uniformly in &, for which —{™>=y,<0,
P& (T <1} = exp (—2y3)[1 + o(e)]

Proof. Let A; ={maxy,«; Wi(t) <} and observe that by Lemma 2 PO AT <
1} = P(Elofgo[{T <1} NA,] + o(&%), uniformly in &,. Let K = max, |c(o)|. By Taylor’s
theorem with remainder, uniformly in &,

(4.16) If(szx)|/ez<Kezx2<K£2C2 for |x|=¢.
Let n = Ke:£2. By Lemma 2 again
PRLUT <1} NA]ZPE {7, <1} NAY]
2 PE{7, <1} +o(e?)
= exp [—2(|yol + 1)*] + 0(¢?)
=exp [—2y3](1 + o(&2))

uniformly in |yo| = {>. A similar calculation gives an upper bound to complete the
proof of (iii).

The uniformity asserted with regard to (4.15) is easily inferred from a careful
reading of the proof of Theorem 1. With the aid of (4.16) one easily sees that (3.13)
holds uniformly in &, in the indicated range. (Note, however, that the réason for the
choice t;,=1— &7 is now apparent, whereas 1— ¢~ ' would have sufficed for
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Theorem 1.) Hence (3.14) holds uniformly and since f”(0) = —c(0) is bounded on
AR, to prove (4.15) it suffices to show that the expectation in (3.14) is uniformly
bounded. By (4.16) the argument following (3.16) (with 1= Ke3{?) shows that
uniformly in &, with —de <y, <—¢73

EQ[WAD/(A—T); {T<t,) NA]S EQg[v,/(1—1,)],

which equals (|yo| + 7)/(|y| — 1) by Lemma 6. This proves (ii).

As the proof of (ii) shows, to prove that (3.5) holds uniformly in log & < y, < —¥
(when &,= &) it suffices to show that (3.15) holds uniformly. To simplify the
notation, we shall write P = P$);, and E = E{);,. Let B, = {maxo, <, |Wy(t)| < &7},
B,={max(z, T)<1—g&}, By={lv—T|<es}, By={IWi(T)—Wi(t)|<se,}, and
B =B, NB,N B;N B, where ¢, - - -, g, will be specified later.

Since B <= {T <t,} N A (uniformly in &,)

IE(WHT)/(1—T);{T <t;} N A)— E(Wi(v)/(1 - 7))|

= |E(WY(T)/(1 - T) - Wi(x)/(1 - 7); B)|
+E[WH(T)/(1 - T); AN{T <t,} 0 B]+ E[Wi(v)/(1 - 7); B°].

The first expectation on the right-hand side is =2¢e,/€,&, + &5/ (&.£,)?, which for any
fixed €;, &, can be made arbitrarily small by a suitable choice of £; and &,. Scrutiny
of the argument following (3.16) shows that (3.16) is uniformly integrable in & and
E,, provided that &, is bounded away from 8%. The same is true for Wi(z)/(1 — 7).
Hence it suffices to show that for any 5> 0, for suitable ¢, - - -, &,, for all small g,
P(B°) < &5 uniformly in &, for which y, < —y. This inequality is straightforward but
somewhat tedious to prove. Note that B°=B{U (B, N B3) U (B;NB5)U (B N BN

$). We first fix &, so small that P(Bf) < &s/4 (cf. Lemma 2). Then choose &, such
that for all small &, P(B, N BS) < £5/4. Next choose £; and &, to make 2¢&,/g,&, +
£3/(€,&,)* small. Then choose 7 > 0 such that for all small £

P(Blnt)éP{Tn - f_n >83}<85/4.

Finally choose 7 still smaller if necessary so that for all small &

P(BiNB,NBY)= P{|Wl(1:_,,)| <erh, 1o,<1-¢,2 max |[W(t)—Wi(z_,)|> 84}

T E=Ty,
< gs/4.
The details are easily filled in.

Handelsman and Keller’s (1966) problem involves (4.12), where #={§,€
R3, ||&oll Za}. Converting (4.12) to polar coordinates yields
4.17) 47 [ @+ DlPPQefT <0 d Iyl
0

An expansion of P{ . {T <t} along the lines of Theorem 3 and substitution into
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(4.17) yields
(2m)ima®t: + dmat/3 + (2 )rard 24 + o(F),

in agreement with the expansion obtained by Handelsman and Keller.

5. Numerical accuracy

In the preceding section we used approximations for PY . {T <t} as an analytic

ingredient in the problems of Kac and of Handelsman and Keller. It is also
interesting to know how good they are as numerical approximations. In this section
we briefly describe the results of a small Monte Carlo experiment addressing this
question. )

The obvious method to obtain a Monte Carlo estimator of P{) . {T <t} is to
partition the time interval [0, ¢] by the points ¢; = it/m, generate N realizations of the
P(go) g, discrete-time random process W(t;), i=0, 1, ---, m and use as an estimator
the relative frequency among the N realizations that W(¢,) ¢ ® for some i. This
estimator has a bias which converges to 0 as m—  and a variance which converges
to 0 as N—> oo,

A number of related examples in Siegmund (1985, especially Chapter X) and
Hogan (1984) suggest that the bias is O(m™%), and it appears quite expensive
computationally to make this bias sufficiently small merely by making m large.

A simple modification to circumvent this difficulty is the following. Having
generated the partial realization W (%), - - -, W(¢;) and decided that T > ¢;, generate
W(tir1). If W(tis1) ¢ R decide T=¢,=t. If W(t,1) € R decide T=¢,,, =t with
probability g[W(t;), W(ti+1), tix1 — 1], where q(&,, &, €) is some approximation for
P(Ef,?&l{T < ¢}. The point is that this approximation need not be particularly good,
provided m is moderately large and hence ¢, —¢; is small.

For example, consider

1) PG { min W)l <al.

A naive approximation to (5.1) is to regard the sphere of radius a as a hyperplane,
from which the points &; are at distances ||&;|| —a (i =0, 1), so that by Lemma 2
(5.1) is approximately

(5.2) exp [~2(|Eoll — @) (IEill — a)/1].

In the special case &, = &, Theorem 1 suggests the approximation

_ d — 1)@ (2y,/t3)
53)  PY { W(s)ll < }z [—2: 1 2<1+( o )]
(G3)  Pggimax [[W(s)l <aj=exp Yo 2aoCnit) )

where y,=a —||&ll, and 4 is the dimension of W(-). When &,= £, the large-
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TaBLE 1
Approximations for P(Elo), golMiNg=,= |[W{s)|| = a}

Analytic
d a l1&oll Monte Carlo (5-3) 5-4)
2 1 12 0-891 0-889 0-843
2 1 1-5 0-535 0-515 0-495
2 1 2:0 0-106 0-089 0-096
3 1 17 0-255 0-221 0-221
3 1 2:0 0-076 0-058 0-068
3 2 2:4 0-646 0-646 0-605
3 2 3.2 0-039 0-033 0-035

deviation approximation provided by Theorem 2 is

(5:4) Pg(?,so{orgagt IW @Il < a} ~ exp (=2y8/0)[1 + | yol/a] =@,

Table 1 compares (5.3), (5.4), and the outcome of an N = 9999 repetition Monte
Carlo experiment. For the Monte Carlo experiment the crude approximation (5.2)
was used as indicated above to ‘bridge’ the gap between f; and f.,,. Some
experimentation with values of m = 10, 20, and 40 showed that m =20 points in our
partition is adequate for the range of values of the other variables considered here.
In all cases t=1. ‘

Both approximations are reasonably good. For small tail probabilities (5.4) is
somewhat better than (5.3), as it should be, but even it is only moderately accurate.
For larger probabilities (5.3) is better than (5.4). The simple-minded approximation
(5.2) would usually be rather poor, although it is quite useful as a tool in the Monte
Carlo experiment.

It is natural to ask whether use of a better approximation than (5.2), e.g. the
approximation provided by Theorem 1, would make the Monte Carlo experiment
more efficient. A second Monte Carlo experiment, not reported here, indicates the
answer is no. In fact the more sophisticated approximation imposes an added
numerical burden at each stage, which at least in the simple case studied here
actually leads to an overall decrease in efficiency.
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