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Preface

IUCUNDI ACTI LABORES.1

Last autumn the average newspaper reader was most likely confronted with theexistence
of something calledfinancial mathematics. Its short period of fame was due to Robert
Merton and Myron Scholes receiving the Nobel prize in economics for their work on the
pricing and hedging of stock options. But in fact, since the famous article by Black&
Scholes (1973) and its reformulation by Harrison & Pliska (1981) in terms of martingale
theory, many papers have been written about the implications of different market models on
derivative prices and hedging portfolios. Most of these approaches rely heavily on specific
assumptions concerning the distribution of the underlying securities price processes. This
fact makes adaptation to more general situations and comparison between models difficult.
Our goal is to present a new formalism for derivative hedging and pricing which meets the
three following demands as far as possible:

1. It shall not be restricted too closely to a specific distribution hypothesis,but instead
be applicable to a large class of underlying securities price processes.

2. In cases where market completeness is not given, the additional assumptions neces-
sary to determine strategies and prices shall be economically meaningful.

3. The derived formulae shall be numerically tractable.

In order to achieve the generality, we are striving for, we express diversemodels for the
underlyings in a uniform manner. This is done in terms ofsemimartingale characteristics
andmartingale problems. These are intuitive notions that have not yet sufficiently found
their way into applications. To overcome this gap we present these concepts here and we
also state a new (though classical in spirit) existence and uniqueness resultfor martingale
problems. Modelling dynamical phenomena by martingale problems should be considered
a stochastic counterpart of ordinary differential equations. Therefore, it is byno means
restricted to financial applications and the title of this thesis could as well have beenSemi-
martingale Modelling and Finance. We have nevertheless chosen the prepositionin, since
the financial aspect is expounded upon and cannot be fully appreciated without the general
mathematical framework.

1Cicero, de finibus 2.32.105
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Chapter 1

Introduction

1.1 Objective

As an investor in a securities market you may be facing two questions. Howshall you
compose your portfolio? What is a good probabilistic model for the market enabling you,
for instance, to estimate your value at risk? To tackle these problems we proposeproceeding
in three steps.

Firstly, one divides the securities of interest into underlyings and derivatives. The assign-
ment of any asset to either group may be quite arbitrary. The only condition we impose is
that – roughly speaking – the value of any derivative is, at a certain future time, uniquely de-
termined by the present or past values of the underlyings. Usually we treat stocks,short-term
fixed income investments etc. as underlyings, while futures, options, zero-coupon bondsetc.
are considered derivatives of these assets. Now one needs a good probabilistic model for the
underlyings, including all unknown parameters that have to be statistically estimated. In
a second step, one extends this statistical model for the underlyings to the whole market,
including the derivatives. In this enlarged model one computes optimal trading or hedging
strategies. The results from the second step are usually not given in closedform. Hence,
step three is to evaluate the formulas by means of numerical algorithms.

This thesis deals with how to perform the second step. For the construction of an appro-
priate formalism we are guided by three goals:

1. Generality: The statistical setting for the underlyings in the first step will usually
be given by econometricians and/or statisticians. They work hard at improving the
models for financial data, including correlation of different securities and analysis
of high frequency data. Therefore, we want our approach to be applicable to very
diverse and complex securities market models including discrete-time models as well
as continuous-time models with continuous and discontinuous paths.

2. Appropriateness of the assumptions:In general, one cannot compute unique prices
and optimal portfolios without making strong assumptions concerning the behaviour
of the market and the quality of trading strategies. We want these hypotheses and
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12 Chapter 1. Introduction

conditions to be economically intuitive.

3. Numerical tractability: Although flipping through the pages of this thesis may not
give you this impression, our approach is aimed at the practitioner. Thus we must
ensure that the resulting formulas are numerically tractable. This does not mean that
one can fall back on existing methods in any given setting. But we want to take care
that the results are not too complex to allow for efficient algorithms at all.To avoid
this, we simplify the assumptions leading to the extended models.

Black & Scholes (1973) give a very elegant and satisfactory solution to our three-step pro-
gram in a particular situation (also including the first and the third step). We can summarize
their reasoning in an informal manner as follows:

market regularity conditions
+ hypotheses on the distribution of the underlyings
+ absence of arbitrage
! unique reasonable derivative prices

perfect hedging strategies

(1.1)

Here market regularity compromises many assumptions characterizing ideal markets: Secu-
rities are traded continuously at any time at a unique market price, tradersare price takers
and they can buy and sell arbitrary amounts of any asset without any transaction costs, taxes,
etc. In the Black-Scholes model the underlyings are stock and a riskless bank account. The
interest rate is presumed to be fixed and stock prices are assumed to behave statistically
as geometric Brownian motion, which is a reasonable though not entirely satisfactory ap-
proximation. The key insight of Black-Scholes is that, under these conditions, the absence
of arbitrage (i.e. the impossibility of riskless gains in the market) suffices to derive unique
prices for European options on the stock. Their idea is as follows: One constructs a dynamic
portfolio consisting of shares of stock and money in the bank account whose value at matu-
rity will certainly equal the payout of the option. The dynamic strategy is self-financing, i.e.
after inception of the strategy no further cash infusions (or withdrawels) areneeded. The
absence of arbitrage implies that investments yielding the same profits must have the same
initial costs. Hence in this setting a unique fair option price can be computed interms of
the current stock price. Moreover, this answers the question how we can hedge our risk if
we have sold an option and if we can only trade in the stock and the bank account. In order
to completely offset the risk, we simply have to buy the duplicating portfolio, which in fact
necessitates an uncountable number of very small trades.

The Black-Scholes approach was reformulated in terms of semimartingale theory by
Harrison & Pliska (1981). The application of the well-developedgeneral theory of stochas-
tic processesto finance led to considerable progress in the field. The paper by Harrison and
Pliska was also the main inspiration for this thesis.

The reasoning (1.1) has been applied to many other underlyings (e.g. foreign exchange,
zero-coupon bonds, cf. Lamberton & Lapeyre (1996)) and other distributional hypotheses
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(for an overview see Frey (1997)). However, though the arbitrage-based approach to deriva-
tive pricing and hedging is very elegant, it suffers from a severe limitation. The choice of the
distribution of the underlyings is quite restricted. An alteration of the probabilistic model
not only affects the pricing formulas, it often makes the whole argumentation impossible.

Many papers have addressed derivative pricing and hedging in incomplete models.Since
the reasoning (1.1) is not applicable, they usually impose additional conditions. Most ap-
proaches are restricted to a certain class of securities price process models (e.g., discrete-
time models or continuous-time models with continuous processes driven by Brownian mo-
tion). Some of them are based on a general equilibrium framework (cf. Duffie (1992)),
some come up with ad-hoc assumptions. The equilibrium framework is appealing from an
economic point of view but in complex models the control problems which must be solved
in order to derive prices and strategies seem almost intractable. Althoughour formalism is
fundamentally built on maximization of expected utility and on some form of market clear-
ing, we do not place ourselves in a general equilibrium setting. It would be interesting to
examine whether our approach could be completely embedded in that framework, but this
is beyond our scope here.

As far as hedging is concerned, Schweizer's work (Föllmer & Schweizer (1991), Schwei-
zer (1991)) is related to ours in that he also works in a general semimartingale setting and
he also applies a local optimality criterion for trading strategies (minimization of quadratic
losses). Contrary to him, we use an increasing utility function since we do notwant to
penalize strategies that produce gains.

The probabilistic models used to describe the underlyings can be of very different kind.
Just consider bivariate diffusions, discrete ARCH time series and hyperbolicjump diffusions
(cf. Chapter 4) that are all used to model stock price behaviour. These are not only processes
with distinct path properties, they are also expressed in different terms: using stochastic dif-
ferential equations or infinitesimal generators for diffusions, conditional distributions for
time series models and the Lévy jump measure for pure-jump independent increment pro-
cesses. In order to apply the same formalism in these disparate settings,we have to use a
unifying representation that can easily be obtained from the respective notations. The appro-
priate tool at hand is the notion ofpredictable characteristicsfor semimartingales, a concept
that goes back to Itô, Grigelionis, Jacod & Mémin (cf. Jacod & Shiryaev (1987), p.573).
Although Jacod's comprehensive account (1979) was written almost twenty years ago, this
notion seems to be scarcely used in applications. Very loosely speaking, semimartingale
characteristics can be compared to the derivative of a time-dependent function. In this re-
spect,martingale problemsform a stochastic counterpart of ordinary differential equations
(ODE's). As with ODE's, the question whether martingale problems have unique solutions
is an issue. We give an introduction to predictable characteristics and martingale problems
with an emphasis on applications in Chapter 2. No knowledge of finance is needed there.

Although the notions and results from Chapter 2 are necessary to understand our formal-
ism in its full generality, we feel that we should not frighten away the majority of potential
readers by confronting them immediately with heavy doses of stochastic calculus. As an
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appetizer, we present our approach in a lighter fashion in Section 1.2 for the multiperiod
model. Although we are applying only moderate portions of probability theory, this ex-
position contains all the important ideas from an economical point of view. In Chapter3,
we give a mathematically rigorous presentation of our formalism, which is then applied to
particular settings in Chapter 4.

Let us mention a peculiarity about our notation that may lead to confusion, but cannot
easily be removed. Forx 2 R

n , x2 denotes the second component ofx, whereas forx 2 R,
it indicatesx squared.

1.2 Intuitive Survey by Means of the Multiperiod Model

1.2.1 The Market Model

In this section we present all economically important ideas at an informal level and with-
out going into mathematical details. We make an effort to be open about the assumptions
underlying our results in order to avoid being overinterpreted.

Our object of interest is a securities market with a finite number of traded assets. Like
most approaches, we assume some kind offrictionless market. In this case, this means that
traders can buy and sell arbitrary (including fractional and negative) amounts of any security
at a unique market price without any transaction costs, taxes, restrictions or margin require-
ments. The borrowing and lending interest rate are equal. Any single trader isassumed to
be so small that he does not affect market prices. Some of the conditions will be weakened
later, but still they form the basis for most of the following. The termfrictionlessis well
chosen, since – as in physical models – it means that we make assumptions that arenever
fulfilled in practice, but allow us to approach the subject by mathematicalmeans. One then
hopes that the results form a good approximation of real markets. In general, this will only
be true in cases where the “friction” is at least low. In our setting this is to say that we are
talking only about heavily traded markets of comparatively large volume and frequency.

The securities at our exchange are termed0; : : : ; n. The market prices of these assets
are described by the(n+ 1)-dimensional stochastic processS, which simply means thatSi

t

is the (random) price of securityi at timet. Heret takes only the values0; 1; 2; : : :, since
in this introduction we are working in a discrete-time frame. We assume that the whole
market (i.e. the price processS) is governed by some objective probability measureP , on
which inference can be made e.g. by statistical means. Security 0 plays a particular role. It
serves as anumeraireby which all other securities are discounted. The discounted market
price of securityi at timet is denoted byZi

t

:= S

i

t

=S

0

t

. In the following we consider only
the discounted price processes(Z

0

; : : : ; Z

n

) which have to be multiplied byS0 to return
to nominal prices. UsuallyS0 is the money market account, i.e. a short-term fixed-income
investment with initial valueS0

0

:= 1. But in principle it could be any traded security.
Discounting practically means expressing the value of any asset or portfolio in units of the
numeraireS0. Note that the resulting trading strategies and derivative prices in the following
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subsections slightly depend on the choice of the numeraire.
We follow the standard approaches in describing trading by another(n+1)-dimensional

stochastic process' called trading strategy. The random vector'
t

= ('

0

t

; : : : ; '

n

t

) is the
investor's (hereafter calledyou) portfolio at timet, i.e. at timet you hold'i

t

shares of
securityi. The composition of your portfolio can only be based on the information you
have, which generally excludes exact knowledge about future price changes. We denote the
information that is available to you up to timet asF

t

. As is usually done, we assume that
you have to order your portfolio for timet strictly beforet, i.e. based on the information set
F

t�1

. Mathematically this is to say that'
t

is F
t�1

-measurable. We call you aspeculatorif
you can choose your portfolio freely among all securities0; : : : ; n. For ahedgerwith fixed
positions k; : : : ;  n in assetsk; : : : ; n, the situation is different. He is only free to choose
'

0

t

; : : : ; '

k�1

t

, but the rest of his portfolio is determined by the equalities'

k

t

=  

k

; : : : ; '

n

t

=

 

n. This is the state of affairs for e.g. a bank that has sold derivativesk; : : : ; n and can only
trade in the underlyings0; : : : ; k � 1 to hedge the risk.

Thevalueof your portfolio (i.e.
P

n

i=0

'

i

S

i or
P

n

i=0

'

i

Z

i in discounted terms) changes
whenever you gain or lose money due to price changes of the securities or if you invest or
withdraw funds. In our approach we are only interested in changes of the first kind. Your
financial gainsin discounted terms at timet are�G

t

('

t

) :=

P

n

i=0

'

i

t

�Z

i

t

:=

P

n

i=0

'

i

t

(Z

i

t

�

Z

i

t�1

), since the discounted securities prices change at timet from Z

i

t�1

to Zi

t

. We denote
your total gainsup to timet byG

t

(') :=

P

t

s=1

�G

s

('

s

) =

P

t

s=1

P

n

i=0

'

i

s

�Z

i

s

.

1.2.2 Optimal Strategies

In this subsection we assume that the probability distribution for future price changes of
all assets is known to the investor. We will relax this condition later.It would be great to
find an optimal strategy in the sense that it maximizes your financial gains�G orG. This
will typically not be possible, of course, since you do not know the direction of future price
changes in advance. One could now seek to maximize at least theexpectedgainE(�G

t

('

t

))

orE(G
t

(')), but this would contradict economic prudence. Investors usually prefer slightly
lower expected returns if they can thereby considerably reduce their risk of losses. One
way of taking this into account is by trying to maximize an expected utility instead of the
expected gain itself.Utility here means a functionu : R ! R of the gain, i.e. you try to
maximizeE(u(�G

t

('

t

))) orE(u(G
t

('))). If u is appropriately chosen, then optimization
of the expected utility takes into account the average return as well as the risk or the degree of
uncertainty of the profit. To that end, you wantu to be strictly increasing and concave. Strict
growth means that you prefer “more” to “less.” Concavity is a way of saying that if you earn
$100/month you will be happier about a pay rise of $50/month than if your salary amounts to
$10,000/month. In particular it means that, when computing expectations, potential losses
more than offset potential profits of the same size and likelihood. Utility functions are a
common tool in equilibrium theory and they can be backed up in that framework (seee.g.
Duffie (1992)). We only use them as a reasonable intuitive concept here. Before we discuss
the particular choice ofu, we have to decide whether we want to consider�G

t

or G
t

for
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maximization. If you seek to optimizeE(u(G
T

('))) for a given distant timeT , you are
trading on a long-term basis. You have to maximize only one function, but over a verylarge
set of variables (namely, the set of all strategies between time 0 andT ). Alternatively, one
can work on a short-term basis by choosing, at each timet, a portfolio'

t+1

that maximizes
the expected utilityE(u(�G

t+1

('

t+1

))) for the following period. In economic theory one
usually considersterminal wealthwhich is a long-term concept (cf. Korn (1997)). For two
reasons we work instead with the one-period gains�G

t

.

1. A sequence of maximizations inRn+1 is a much simpler mathematical problem than
optimizing over the whole set of strategies, which is of a very high dimension. Since
numerical tractability is a basic demand for our approach, this alone would be reason
enough to consider only local gains.

2. It seems likely to us that many investors really trade on a short-term basis, so that the
easier concept may even be as adequate as the other. We also avoid dependencies of
the results on the terminal dateT .

Now we turn to the shape of the utility functionu : R ! R. We demand the following
properties:

1. u is three times continuously differentiable.

2. The derivativesu0; u00; u000 are bounded andlim
x!1

u

0

(x) = 0.

3. u(0) = 0, u0(0) = 1.

4. u is strictly increasing (i.e.u0(x) > 0 for anyx 2 R).

5. u is strictly concave (i.e.u00(x) < 0 for anyx 2 R).

� := �u

00

(0) will be calledrisk aversion. We have already explained that we claim Proper-
ties 4 and 5 for economical reasons. The third statement is just a convenient normalisation
that does not affect the results. The first two features are set up for mathematical ease and
(particularly the boundedness ofu0) to allow application to a large class of underlying prob-
ability distributions. Since we want to give concrete advice to the trader, we propose a
one-parametric class ofstandard utility functions, namely

u

�

: R ! R; x 7!

1

�

(1 + �x�

p

1 + �

2

x

2

)

for any risk aversion� > 0. The functionsu
�

are plotted in Figure 1.1 for� = 0:2 (dotted
line), � = 1 (solid line) and� = 5 (dashed line). The risk aversion parameter� must be
chosen by the investor according to his tastes. Choosing a very large value means that one
tries to minimize the expected losses, almost regardless of the positive gains. As a result,
big values of� may be appropriate for a hedger. On the other hand if� is small, thenu

�

(x)

behaves like the identity for moderate values ofx, so that one is basically maximizing the
expected profit without caring about the risk.

We are now ready to define optimal portfolios.
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-2 -1 1 2

-3

-2

-1

1

Figure 1.1: Standard utility functionsu
�

for � = 0:2, � = 1, � = 5.

Definition 1.1 We call a strategyu-optimal if E(u(�G
t

('

t

))) is maximal for anyt 2 N n

f0g.

SinceE(u(�G
t

('

t

))) = E(E(u(�G

t

('

t

))jF

t�1

)) (whereE(�jF
t�1

) denotes conditional
expectation givenF

t�1

) and since'
t

can be chosenF
t�1

-measurable, it suffices to maximize
the function

 7! E(u(�G
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Taking partial derivatives yields

Lemma 1.2 1. A strategy' is u-optimal for the speculator if and only if for anyt 2
N n f0g
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= 0 for anyi 2 f1; : : : ; ng:

2. A strategy' is u-optimal for the hedger with fixed positions k; : : : ;  n in the assets
k; : : : ; n if and only if for anyt 2 N n f0g

(a)
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(b)

'

i

t

=  

i for anyi 2 fk; : : : ; ng:

Observe that'0 can be arbitrarily chosen because�Z

0

t

= 0 for any t. It remains to solve
n equations in then unknowns'1

t

; : : : ; '

n

t

at any timet. For the rest of this chapter, we
assume that the equations in Lemma 1.2 have a unique solution. In Chapter 3 (cf. Theorems
3.28 and 3.26), we show that the existence of optimal strategies is implied by the absence of
arbitrage in the following sense.
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Definition 1.3 We call a trading strategy' anarbitrage if there is a fixed timeT > 0 such
thatG

T

(') � 0 P -almost surely andP (G
T

(') > 0) > 0.

Let us summarize. We have defined a notion of optimality for trading strategiesin mar-
kets where the distribution of all securities price processes is known. Thisconcept is flexible
as to the risk profile of the trader (by adjustment of the risk aversion parameter� in the stan-
dard utility functionu

�

) and to his situation (speculator vs. hedger). Since we have chosen
a local criterion, optimal strategies can be computed relatively easily by Lemma 1.2.

1.2.3 Trading Corridors

As a real investor you are facing transaction costs. So you are not going to applya trading
strategy necessitating many small adjustments of the portfolio. You have tosteer a middle
course between too many transactions and positions which are too risky. To assist you, we
want to provide you with some sort of alarm that is triggered whenever you are too far off
the optimal strategy. More precisely, we define a trading corridor consisting ofall portfolios
whose expected utility does not fall to more than" below the optimal value. The utility
bandwidth" 2 R

+

has to be chosen according to the investor's needs. A large parameter
" means accepting a higher risk, whereas a trader who does not want to leave the corridor
corresponding to a small" must reshape his portfolio more often.

Definition 1.4 1. The(u; ")-trading corridorat timet for the speculator is the set of all
portfolios b'

t

such that
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where' is theu-optimal strategy for the speculator.

2. The(u; ")-trading corridorat timet for the hedger with fixed positions k; : : : ;  n in
the assetsk; : : : ; n is the set of all portfoliosb'
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such that
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and

b'

i

t

=  

i for anyi 2 fk; : : : ; ng;

where' is theu-optimal strategy for the hedger.

It is shown in Chapter 3 that the trading corridors usually form convex subsets ofR

n+1 .
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1.2.4 Derivative Pricing

For the computation of optimal strategies we need a probabilistic model for the wholemar-
ket. Obtaining such a model solely by statistical means has two disadvantages. Firstly, one
has to deal with a very large number of stochastic processes which complicates estimation.
Secondly, one ignores the fact that some assets are closely linked to others by being deriva-
tives of them. The Black-Scholes model shows that in some settings this connection can
be so strong that the derivative price is actually a function of the underlying. In that sense
one can interpret the Black-Scholes approach as a model extension from a market with two
securities (bank account and stock) to an infinity of assets (bank account, stock and all Eu-
ropean options on the stock). In this subsection we will mimic this aspect in a more general
situation, albeit on admittedly weaker grounds.

The setting is as follows. We are still considering an exchange using securities0; : : : ; n.
We assume that the assets, sayl + 1; : : : ; n, arederivativesof 0; : : : ; l in the sense that,
at some future timeT , the random vector(Z l+1

T

; : : : ; Z

n

T

) is a deterministic function of
the process(S0

t

; Z

1

t

; : : : ; Z

l

t

)

t2f0;1;:::;Tg

(the underlyings). As in Subsection 1.2.1, we are
given a securities market for the underlyings0; : : : ; l, including the probability measureP
which governs price changes. However, we do not yet know anything about the derivatives
l + 1; : : : ; n, except their final valuesZ l+1

T

; : : : ; Z

n

T

in terms of the assets0; : : : ; l. Our aim
is to build a probabilistic model for the whole market, i.e. to make a reasonable suggestion
for the distribution of all securities. The extended model can then be used e.g. toestimate
the value of risk of your portfolio or to compute optimal hedging strategies in the sense
of Subsection 1.2.2. This extension is only possible under some very strong assumptions
which carry a faint equilibrium flavour:

(A 1) We suppose that the vast majority of traders in the derivative market consists of spec-
ulators, whereas the influence of other investors (e.g. hedgers) is negligable.

(A 2) Moreover, we assume that the speculators intuitively (by their market experience)
know the real distribution of all securities prices including the derivatives and that
they trade (maybe unknowingly) by maximizing their expected utility in the sense of
Subsection 1.2.2. We suppose that they all work with standard utility functions, but
possibly with a differing risk aversion�.

What is a speculator doing under these assumptions? He is choosing theu

�

-optimal
strategy' according to his risk-aversion�. By Lemma 1.2 and sinceu0

�

(x) = u

0

1

(�x) for
any� > 0, x 2 R, this strategy' satisfies
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= 0 (1.2)

for i = 1; : : : ; n and anyt. It follows that all speculators trade with multiples of theu
1

-
optimal strategy. In particular, if any speculator has a positive (resp. negative) amount of
a certain derivative in his portfolio, then the others do as well. However, according to our
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first assumption there are only few potential suppliers of these assets compared to a huge
crowd of unrestricted traders. Hence, the portfolio of any typical speculator must contain
practically no derivative. To phrase it mathematically, we can drawthe following

Conclusion 1.5 If ' is theu
�

-optimal strategy for the speculator, then'i = 0 for i =

l + 1; : : : ; n.

From now on, fix� > 0 and let' denote theu
�

-optimal strategy for the speculator. By
Lemma 1.2 it follows that
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for i = 1; : : : ; n and anyt. In particular (again by Lemma 1.2),('0

; : : : ; '

l

) is theu
�

-
optimal portfolio in the restricted market consisting only of the underlyings0; : : : ; l and can
be calculated without knowing the derivative prices. Recall that we have assumed that the
optimal portfolios are unique except for'0 which can be arbitrarily chosen. In Chapter 3
we see that one can do without this restriction.

Observe that Equation (1.3) allows to compute the derivative pricesZ

i

T�1

, Zi

T�2

etc. re-
cursively. Indeed, sinceZ1

; : : : ; Z

l are given and'1

; : : : ; '

l do not depend on the derivative
prices,Zi

t�1

can be obtained fromZi

t

by solving Equation (1.3). Since such a recursive pro-
cedure is not applicable in continuous-time models, we will show how to obtain the deriva-
tive prices in one step. To that end, we define a new probability measureP

�, equivalent to
the objective probability measureP , by its Radon-Nikodým density
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Proposition 1.6 1. The expectation of the right-hand side of Equation (1.4) equals1, so
P

� is well-defined.

2. The definition ofP � does not depend on�.

3. For t = 1; : : : ; T and anyF
t

-measurable random variableY we have that
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whereE� denotes expectation with respect toP � instead ofP .

PROOF.

1. SinceE(dP �
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for t = 0; : : : ; T . (Just taket = 0.) By backward induction and the properties of
conditional expectation we have that
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2. Sinceu0
�

(x) = u

0

1

(�x) for anyx, we have that' is u
�

-optimal if and only if�' is the
u

1

-optimal strategy. This implies thatP � does not change if we replace� with 1 and
theu

�

-optimal strategy' with theu
1

-optimal strategy.

3. LetA 2 F
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By Equation (1.3) and Statement 3 of the previous proposition, it follows thatE
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) for t = 1; : : : ; T and
i = 0; : : : ; n. Thus the processes(Zi
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t=0;:::;T

areP �-martingales and we have shown the
following

Lemma 1.7 The processes(Zi
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areP �-martingales fori = 0; : : : ; n. In particular,
the derivative prices are uniquely given by
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Note that some regularity conditions are needed to make the previous lemma hold. These
can be found in Chapter 3, where we also give more rigorous proofs.

By Lemma 1.7, derivative prices are obtained by calculating conditional expectations
under an equivalent martingale measure in the sense of

Definition 1.8 A probability measureP �

� P (i.e. P � andP have the same null sets) is
called equivalent martingale measure (EMM)for the market with terminal dateT if the
discounted securities price processes(Z

i

t

)

t=0;:::;T

areP �-martingales fori = 0; : : : ; n.

By a well-known result (cf. Lemma 3.7) the existence of an EMM implies that the extended
market admits no arbitrage strategies, which is desirable for a reasonable market model.

The traditional arbitrage-based approach of Black and Scholes is usually applied to com-
plete settings where the cash flow of any derivative can be duplicated by a dynamic portfolio
(i.e. a trading strategy) consisting only of underlyings. The only price process consistent
with an absence of arbitrage in this case is the value process of the correspondingduplicat-
ing portfolio, which can be obtained by calculating conditional expectations under an EMM
as in Lemma 1.7. Since there usually exists only one such measure in complete models (cf.
Lamberton & Lapeyre (1996), Theorem 1.3.4), both approaches to derivative pricing yield
the same result.

Let us mention two alternatives to substitute for the crucial Assumptions (A1) and (A
2) underlying our pricing approach. We have already observed that the optimal strategies
of the speculators differ only by a factor. By Equation (1.2) it is in fact easy tosee that
the union of the portfolios ofp speculators with, say, risk aversions�

1

; : : : ; �

p

is theu
�

-
optimal strategy for a speculator with risk aversion� := 1=(

P

p

i=1

�

�1

i

). If other investors
are virtually absent, then this imaginary trader can be interpreted as arepresentative agent
standing in for the whole market. Since any derivative that is bought by some investor has
to be sold by another, the union of all portfolios must contain zero derivatives. Byloosely
applying terms from equilibrium theory one may rephrase Assumptions (A 1) and (A 2) as

(A 10) Derivative marketsclear, i.e. the representative agent has a zero position in the assets
l + 1; : : : ; n.

(A 20) The representative agent is a speculator maximizing his expected standard utility for
some� > 0. In fact, the behaviour of any single trader is irrelevant, as long as the
joint strategy of all investors isu

�

-optimal for some� > 0.

The third approach leading to Conclusion 1.5 focuses on the issuer and is quite different
from the first two. Suppose that a derivative is supplied by a bank for a fixed price.We
are interested in the lowest price at which the bank is willing to offer this security. If it
usesu

�

-optimal strategies for some� > 0, then the threshold is the price at which the
optimal portfolio contains zero derivatives. If the price is lower, selling is disadvantagous,
if it is higher, it becomes increasingly profitable. Hence, if the bank is a speculator using
standard utility functions and if we assume that the market price of the derivative is close to
its threshold value, we end up again at Conclusion 1.5.
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Let us once again give a brief summary. We have derived derivative prices based only
on the probability distribution of the underlyings. This model extension is based on strong
economic assumptions. Lemma 1.7 shows that the derivative price processes canbe com-
puted by calculating conditional expectations under an equivalent martingale measure. This
implies that the extended market model is arbitrage-free and that, in complete models, the
derived prices coincide with the unique arbitrage-based values.

What are the limitations of our suggested prices?

1. An extended model can never be better than the underlying probabilistic description
of the assets0; : : : ; l. This is why one should not focus too strongly on complete
settings, although the derivative prices are better founded in these models. They often
do not fit the distribution of the underlyings very well.

2. The assumption concerning the genesis of derivative prices may be intuitive, but of
course it can only be a rough approximation. Except for derivatives that can actually
be duplicated, market prices stem from extremely complex, interrelated mechanisms.
Therefore, we doubt that any economical model will ever be able to determine deriva-
tive prices correctly as a function of the underlyings and some exogenous variables.
Still, a lot of investors want reasonable concrete results to base their decisions on.
This is exactly the purpose of our pricing approach. In the next two subsections we
will present ways to estimate the accuracy of our proposed prices and to improve the
market model, although this involves more complicated computations.

1.2.5 Price Regions

In the previous subsection we computed derivative prices under the condition that allin-
vestors in the market were speculators. This implied that any of these traders had a zero
position in any derivative. In the following two subsections we allow for the existence of
other traders who hold a non-zero amount of derivatives in their portfolio. If the positions of
these other traders do not offset each other, then the speculators have to assumethe counter-
position. Hence, the union of the speculators' portfolios does not contain zero derivatives,
as was assumed in the previous subsection. We want to examine how this change affects
market prices. To this end, we replace the first of the two assumptions in Subsection 1.2.4
with

(A 1̂) The union of the portfolios of all speculators contains, at any timet and for any
i 2 fl + 1; : : : ; ng, �i shares of Securityi,

where�l+1

; : : : ; �

n are fixed real numbers (called theexternal supply). Observe that the
original Assumption (A 1) is a verbal paraphrase of Condition (A1̂) in the case�l+1

=

0; : : : ; �

n

= 0. In the previous subsection we observed that the union of all the speculators'
portfolios is again au

�

-optimal strategy for some� > 0. We refer to this� as therisk
aversion of the representative speculator(in short:representative risk aversion). Given the
preceding remark and Condition (Â1), the following definition should be obvious.
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Definition 1.9 We call discounted price processesZ l+1

; : : : ; Z

n consistent with the repre-
sentative risk aversion� > 0 and the external supply�l+1

; : : : ; �

n (in short: (�; �l+1

; : : : ;

�

n

)-consistent), if theu
�

-optimal strategy' for the speculator satisfies

'

i

t

= �

i for i = l + 1; : : : ; n and anyt

(i.e. theu
�

-optimal strategy for the hedger with fixed positions�l+1

; : : : ; �

n in the assets
l + 1; : : : ; n is u

�

-optimal for the speculator).

In Subsection 1.2.4 we calculate(�; 0; : : : ; 0)-consistent price processes by computing con-
ditional expectations under an equivalent martingale measure. We will see thatthis is also
possible for non-vanishing external supply. For this purpose, fix(�; �

l+1

; : : : ; �

n

) and let
Z

l+1

; : : : ; Z

n and' be as in Definition 1.9. Define a new probability measureP

�, equiva-
lent to the objective probability measureP , by its Radon-Nikodým density
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With the same proof as in Proposition 1.6, one shows

Proposition 1.10 1. The expectation of the right-hand side of Equation (1.6) equals1,
soP � is well-defined.

2. For t = 1; : : : ; T and anyF
t

-measurable random variableY we have that
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As in Subsection 1.2.4, we conclude from Lemma 1.2 and the second statement of the pre-
vious proposition thatE�

(�Z

i

t

jF

t�1

) = 0 for i = 0; : : : ; n and anyt. Hence, the processes
(Z

i

t

)

t=0;:::;T

are againP �-martingales, but this time forP � defined by Equation (1.6). Thus
we have obtained

Lemma 1.11 Suppose that the market prices are(�; �

l+1

; : : : ; �

n

)-consistent. Then the pro-
cesses(Zi

t

)

t=0;:::;T

are P �-martingales fori = 0; : : : ; n, where the EMMP � is given by
Equation (1.6) and' is theu

�

-optimal strategy for the speculator in the market0; : : : ; n.

Let us try to understand what(�; �l+1

; : : : ; �

n

)-consistent prices mean. In complete models
derivative prices can be derived solely based on the absence of arbitrage. They are indepen-
dent of supply and demand, making those models very attractive. In more general settings
this is no longer true. Derivative prices are a function not only of the underlyings, but
also of the extent to which they are asked for by investors wanting to satisfy their needs.
In our pricing approach this is taken into account by specifying the external supply (resp.
demand for negative values)�l+1

; : : : ; �

n. Without considering concrete examples here,
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one would intuitively expect the current derivative price to be lower (resp. higher) than the
(�; 0; : : : ; 0)-consistent prices from Subsection 1.2.4 if the respective supply is greater (resp.
less) than 0, since surplus supply generally tends to lower market prices, whereas excess de-
mand increases them. Note that by Lemma 1.11,(�; �

l+1

; : : : ; �

n

)-consistent market prices
are always arbitrage-free, since they can be computed by means of an equivalent martingale
measure. In particular, they do not depend on the parameter vector(�; �

l+1

; : : : ; �

n

) if there
exists but one EMM. This is another way of saying that in complete models (where there is
a unique EMM) derivative prices are independent of supply and demand. This property of
complete models leads us to measure the degree of incompleteness of the given model or,
more precisely, the degree of unattainability of the contingent claims under consideration
by the extent to which derivative prices do in fact depend on the supply�

l+1

; : : : ; �

n. To
this end, we replace the unique derivative prices from Subsection 1.2.4 with the setof prices
corresponding to any external supply that does not exceed a given bound. More specifically,
we have the following

Definition 1.12 As before, the underlyings0; : : : ; l and the derivatives at maturityZ l+1

T

; : : : ;

Z

n

T

are given. Fix a representative risk aversion� > 0 and asupply boundr � 0. We say
that derivative price processes(Z l+1

t

; : : : ; Z

n

t

)

t=0;:::;T

belong to the�r-price regionif they are
(�; �

l+1

; : : : ; �

n

)-consistent market price processes for some�

l+1

; : : : ; �

n satisfyingj�ij � r

for i = l + 1; : : : ; n.

Remark. One easily sees that the price region depends only on the product�r of � andr.
Therefore it makes sense to use the term�r-price region instead of(�; r)-price region.

Price regions may be compared to confidence regions in statistics, although they have
nothing to do with probability. In neither situation we have enough information to uniquely
determine a certain quantity (an unknown parameter in statistics, derivative prices in fi-
nance). We can now take one of two paths. One option is to choose a particular value (some
optimal estimator in statistics, the derivative prices from Subsection 1.2.4 in finance). Al-
ternatively, we may give a set (confidence/price region) consisting of those values that are
– according to some criterion – the most reasonable ones. Price regions (as confidence re-
gions) have the advantage that they contain information concerning the precision of thepro-
posed values. Therefore, they are particularly suited for model comparison. If for fixed �r
the price region is comparatively small or even zero, then derivative prices are chiefly resp.
entirely determined by the underlyings and only weakly dependent on supply and demand.
In this case the proposed derivative prices from Subsection 1.2.4 should form a reasonable
approximation. On the other hand, in settings where the price region is comparatively large,
model extensions solely based on the underlyings might be of limited explanatory power,
since the derivative market may follow its own dynamics to some extent.

Although we consider them to be a useful concept, price regions in the sense of Def-
inition 1.12 face two drawbacks because they are defined in terms of(�; �

l+1

; : : : ; �

n

)-
consistent price processes.



26 Chapter 1. Introduction

1. We have not shown that(�; �l+1

; : : : ; �

n

)-consistent derivative prices really exist for
any choice of the parameter vector. Especially in the general continuous-timecontext
of Chapter 3 (cf. Section 3.5), no satisfactory sufficient conditions for existence are
known so far. This question should be addressed in future research.

2. Except for the simplest case (�

l+1

= 0; : : : ; �

n

= 0), consistent price processes are
generally hard to compute explicitly. In order to see this, compare the Lemmas 1.7
and 1.11. The derivative prices are obtained in both cases by computing conditional
expectations under an equivalent martingale measure. But whereas the EMMP

� in
Subsection 1.2.4 is defined only in terms of the underlyingsZ

0

; : : : ; Z

l, the pricing
measureP � in the current subsection (cf. Equation (1.6)) also depends on the deriva-
tive pricesZ l+1

; : : : ; Z

n that have yet to be calculated. A way out of this vicious
circle is to proceed by backward recursion. The derivative pricesZ

l+1

t

; : : : ; Z

n

t

for
t = T (maturity) are, by assumption, given in terms of the underlyings. If the market
is (�; �l+1

; : : : ; �

n

)-consistent, then there exists, by Lemma 1.2, a strategy' such that

E

�

u

0

�

n

X

j=1

'

j

t

�Z

j

t

�

�Z

i

t

�

�

�

F

t�1

�

= 0 for anyi 2 f1; : : : ; ng (1.7)

and
'

i

t

= �

i for anyi 2 fl + 1; : : : ; ng:

Since'l+1

t

; : : : ; '

n

t

are known, Statement (1.7) is a system ofn equations in then
unknowns'1

t

; : : : ; '

l

t

; Z

l+1

t�1

; : : : ; Z

n

t�1

. Given that a unique solution exists, we may
solve forZ l+1

t�1

; : : : ; Z

n

t�1

and subsequently in the same manner forZ

t�2

; Z

t�3

etc.
However, this recursive algorithm has no continuous-time counterpart. Therefore,
efficient computation of(�; �l+1

; : : : ; �

n

)-consistent prices is also an issue for future
research.

We now define an alternative notion of price regions that is less satisfactoryfrom a theo-
retical point of view but avoids the stated problems. To this end, we replace the(�; �

l+1

; : : : ;

�

n

)-consistent prices in Definition 1.9 with(�; �l+1

; : : : ; �

n

)-approximate prices that are ob-
tained as follows:

1. As before, the underlyings0; : : : ; l and the derivatives at maturityZ l+1

T

; : : : ; Z

n

T

are
given as input. Fix� > 0 and�i 2 R for i = l + 1; : : : ; n.

2. Take derivative pricesZ l+1

; : : : ; Z

n as in Subsection 1.2.4.

3. Let' be theu
�

-optimal strategy for the hedger with fixed positions�l+1

; : : : ; �

n in
the assetsl + 1; : : : ; n, given the derivative pricesZ l+1

; : : : ; Z

n from step 2.

4. Define a new probability measureP �, equivalent to the objective probability measure
P , by its Radon-Nikodým density

dP

�

dP

:=

T

Y

t=1

u

0

�

�

P

n

j=1

'

j

t

�Z

j

t

�

E

�

u

0

�

�

P

n

j=1

'

j

t

�Z

j

t

�

�

�

�

F

t�1

�
:
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5. Define new derivative price processesbZ l+1

; : : : ;

b

Z

n by

b

Z

i

t

:= E

�

(Z

i

T

jF

t

) for i = l + 1; : : : ; n and anyt:

b

Z

l+1

; : : : ;

b

Z

n shall be called(�; �l+1

; : : : ; �

n

)-approximateprice processes.

In the fourth step of this definition we mimic Equation 1.6, but we replace the(�; �

l+1

; : : : ;

�

n

)-consistent prices that we do not know with(�; 0; : : : ; 0)-consistent prices as an approxi-
mation. Likewise,' is based onZ l+1

; : : : ; Z

n from Subsection 1.2.4 instead of the unknown
prices as in Definition 1.9. Approximate prices are then computed asP

�-martingales just as
in Lemma 1.11. Observe that if we started with(�; �l+1

; : : : ; �

n

)-consistent prices instead
of the processes from the previous subsection in the second step,b

Z

l+1

; : : : ;

b

Z

n would be-
come(�; �l+1

; : : : ; �

n

)-consistent as well (by Lemma 1.11). Our hope is that for moderate
values of�l+1

; : : : ; �

n the approximate prices are close to the corresponding consistent mar-
ket prices (cf. Subsection 4.1.4), but no rigorous statement has been proved yet. Onemay
also iterate steps 2 to 5 of the above five-step procedure by substitutingb

Z

l+1

; : : : ;

b

Z

n for
Z

l+1

; : : : ; Z

n in the second step and obtain an improved approximatione

Z

l+1

; : : : ;

e

Z

n etc.
One can perhaps apply this iteration procedure in order to obtain(�; �

l+1

; : : : ; �

n

)-consistent
price processes in the limit (cf. Subsection 4.1.4). Be this as it may, we applyapproximate
market prices here since they are well-defined, can be obtained with sufficient ease, and
share the following useful properties.

Lemma 1.13 1. If bZ l+1

; : : : ;

b

Z

n are(�; �l+1

; : : : ; �

n

)-approximate price processes, then
P

� from step 4 is an equivalent martingale measure for the market(Z

0

; : : : ; Z

l

;

b

Z

l+1

;

: : : ;

b

Z

n

), which is therefore arbitrage-free.

2. For �l+1

= 0; : : : ; �

n

= 0 both (�; �l+1

; : : : ; �

n

)-approximate and(�; �l+1

; : : : ; �

n

)-
consistent prices coincide with the derivative price processes from Lemma 1.7.

3. If there exists only one EMM, then approximate prices and consistent prices neces-
sarily coincide with the unique arbitrage-free prices.

PROOF.

1. Firstly observe that Proposition 1.10 also holds forP

� from step 4. By Statement 2
in Lemma 1.2 we have thatE(�Zi

t

u

0

�

(

P

n

j=1

'

j

t

�Z

j

t

)jF

t�1

) = 0 for i = 1; : : : ; l and
any t. By Statement 2 of Proposition 1.10, it follows thatE�

(�Z

i

t

jF

t�1

) = 0 for
i = 1; : : : ; l and anyt. This implies thatZ0

; : : : ; Z

l areP �-martingales. Moreover,
b

Z

l+1

; : : : ;

b

Z

n areP �-martingales by definition.

2. This follows from the definitions, from Lemma 1.7 and from Conclusion 1.5.

3. This follows immediately from Statement 1, Lemma 1.11 and Lemma 1.7. �

Parallel to Definition 1.12 we now define approximate price regions for use in place of
�r-price regions.
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Definition 1.14 Fix a representative risk aversion� > 0 and a supply boundr � 0. We
say that derivative price processes(Z

l+1

t

; : : : ; Z

n

t

)

t=0;:::;T

belong to theapproximate�r-price
regionif (Z l+1

t

; : : : ; Z

n

t

)

t=0;:::;T

are(�; �l+1

; : : : ; �

n

)-approximate market price processes for
some�l+1

; : : : ; �

n satisfyingj�ij � r for i = l + 1; : : : ; n.

We want to summarize the notions from this subsection. There are no unique arbitrage-
free derivative values in incomplete models. Prices may depend on supply and demand. We
take this fact into account by introducing consistent prices that incorporate external supply.
By uniting all price processes that correspond to moderate demand, we define price regions
that can be used to measure the degree of incompleteness of the market and allowus to
assess the accuracy of the prices from Subsection 1.2.4. For computational ease we also
introduce approximate prices and approximate price regions as a substitute for consistent
prices and price regions. For better justification of the concepts from this subsection, a few
questions still must be resolved. Firstly, what are sufficient conditions for theexistence of
processes that are consistent with given external supply? Secondly, efficient algorithms to
compute these prices are desirable. Thirdly, under what conditions and in what sensedo
approximate prices converge to their consistent counterparts?

1.2.6 Improved Derivative Models

In Subsection 1.2.4 we compute derivative prices mainly for the purpose of model extension.
Such an extension should be based on all the available information. Therefore, weshould
incorporate the initial derivative pricesZ l+1

0

; : : : ; Z

n

0

in our model, since they are observable
in the market and have not yet been taken into account. The idea is again to replace the first
assumption in Subsection 1.2.4 with Condition (A1̂) from Subsection 1.2.5 and hence to
work with (�; �

l+1

; : : : ; �

n

)-consistent price processes.

Definition 1.15 In addition to the underlyings0; : : : ; l and the terminal valuesZ l+1

T

; : : : ; Z

n

T

,
fix initial derivative pricespl+1

; : : : ; p

n. We call discounted price processesZ l+1

; : : : ; Z

n

consistent with the initial pricespl+1

; : : : ; p

n (in short:(pl+1

; : : : ; p

n

)-consistent) if

1. there exists a� > 0 and�l+1

; : : : ; �

n

2 R such thatZ l+1

; : : : ; Z

n are(�; �l+1

; : : : ; �

n

)-
consistent,

2.
Z

i

0

= p

i for i = l + 1; : : : ; n:

By using(pl+1

; : : : ; p

n

)-consistent processes instead of the prices from Subsection 1.2.4, we
are hitting two birds with one stone. Firstly, we avoid contradicting observed and theoretical
initial prices. Secondly, we can relax the strong Assumption (A 1) (that speculators hold vir-
tually no derivatives) to the weaker Condition (A1̂) (that speculators hold a constant amount
of derivatives). However, as noted in the previous subsection, consistent price processes are
mathematically intricate. Therefore, we once again introduce a second concept that is less
intuitive from an economic point of view but facilitates explicit computations.
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Definition 1.16 Fix initial derivative pricespl+1

; : : : ; p

n. Discounted price processesZ l+1

;

: : : ; Z

n shall be calledapproximately(pl+1

; : : : ; p

n

)-consistentif

1. there exists a� > 0 and�l+1

; : : : ; �

n

2 R such thatZ l+1

; : : : ; Z

n are(�; �l+1

; : : : ; �

n

)-
approximate price processes,

2.

Z

i

0

= p

i for i = l + 1; : : : ; n:

Let us make some

Remarks.

1. The risk-aversion� in Definitions 1.15 and 1.16 can in fact be chosen arbitrarily,
since by Lemma 1.2 andu0

�

(x) = u

0

1

(�x) we have that(�; �l+1

; : : : ; �

n

)-consistent
processes are(b�; (�=b�)�l+1

; : : : ; (�=b�)�

n

)-consistent for any�; b� > 0. Therefore,
one may choose� := 1 without loss of generality in both definitions.

2. As shown in Lemma 1.11,(pl+1

; : : : ; p

n

)-consistent markets always constitute arbi-
trage-free price systems.

3. It is easy to see that(pl+1

; : : : ; p

n

)-consistent prices do not necessarily exist for ar-
bitrary pl+1

; : : : ; p

n. Indeed, the initial derivative valuesZ l+1

0

; : : : ; Z

n

0

are uniquely
determined in complete markets by the absence of arbitrage. Therefore, in this case
there is only one price vector(pl+1

; : : : ; p

n

) such that(pl+1

; : : : ; p

n

)-consistent prices
exist.

4. It is an open question as to whether(p

l+1

; : : : ; p

n

)-consistent price processes are com-
pletely determined by the initial pricespl+1

; : : : ; p

n.

5. Choosing(pl+1

; : : : ; p

n

)-consistent price processes is related to the method ofinvert-
ing the yield curvein interest rate theory (cf. Björk (1997), Subection 3.5). In both
settings, one considers a parametric family of equivalent martingale measures and one
uses initial derivative prices (i.e. bond prices in interest rate theory) to determine the
unknown parameters. We will apply our approach to interest rate models in Section
4.9.

6. Remarks 1–5 also hold for approximately(pl+1

; : : : ; p

n

)-consistent instead of(pl+1

;

: : : ; p

n

)-consistent price processes.

7. Similar to the previous subsection, it is desirable to prove convergence results relating
(p

l+1

; : : : ; p

n

)-consistent and approximately(pl+1

; : : : ; p

n

)-consistent price processes
(for a comparison see Subsection 4.1.4).
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Observe that for the construction of(pl+1

; : : : ; p

n

)-consistent price processes we as-
sumed that the external supply�l+1

; : : : ; �

n stays constant through time. Therefore, the
extended model will not keep track of variability that is due to changing demand forderiva-
tives. One can now go one step further and take this variability into account byconstructing
models withstochastic external supply. Since this step towards more flexibility leads to
even more demanding computations, we will limit ourselves here to sketching aconceiv-
able procedure as an outlook.Stochastic supplystands for a randomly changing vector
(�

l+1

t

; : : : ; �

n

t

)

t=1;:::;T

, where�i
t

denotes the supply of Securityi at time t which we as-
sume to be known at timet � 1, i.e. F

t�1

-measurable. As in Subsection 1.2.5, we may
now define(�; �l+1

; : : : ; �

n

)-approximate price processesby substituting the random sup-
ply (�

l+1

t

; : : : ; �

n

t

) for the fixed supply�l+1

; : : : ; �

n in the third step. The statements and
proofs of Lemma 1.13 also hold for these generalized(�; �

l+1

; : : : ; �

n

)-approximate price
processes. For model building one may now proceed as follows.

1. As before, subdivide the market into underlyings0; : : : ; l as well as derivativesl + 1;

: : : ; n and take a good probabilistic model for the underlyings. Fix� := 1.

2. Take a probabilistic model of Markovian type for the external supply process(�

l+1

t

;

: : : ; �

n

t

)

t=1;:::;T

(e.g. a Markov chain in discrete time or a diffusion process in con-
tinuous time). Do not specify the initial supply(�l+1

1

; : : : ; �

n

1

) yet. All that is still
missing for computation of(�; �l+1

; : : : ; �

n

)-approximate prices is the current value
(�

l+1

1

; : : : ; �

n

1

), which is not directly observable.

3. As for approximately(pl+1

; : : : ; p

n

)-consistent processes (cf. Definition 1.16), try to
evaluate the initial supply(�l+1

1

; : : : ; �

n

1

) such that theoretical and observed derivative
prices int = 0 coincide. The market model for Securities0; : : : ; n is now completely
determined.

4. The last step is to check whether the model extension and especially the supplydy-
namic in step 2 fits the real data well. To that end you successively calculate the
implied supply(�l+1

t

; : : : ; �

n

t

) by equating theoretical and observed derivative prices
in t = 0; 1; 2; : : :. Is it likely that the time series(�l+1

t

; : : : ; �

n

t

)

t=1;:::;T

is generated by
your model in step 2? If yes, that is fine. If not, then you should change it.

Through this procedure, you obtain a model that can keep track of a dynamic that originates
in the derivatives market but which is still definitely arbitrage-free and conforms to the initial
market prices.

In summary, we have obtained models that can be made consistent with the initially
observed derivative prices. Firstly, this was done by assuming constant instead of vanish-
ing external supply as in Subsection 1.2.4. Secondly, we approximated this approach in
order to avoid the computational problems which already appeared in the previous subsec-
tion. Thirdly, we briefly sketched how one may construct models that can incorporate an
independent dynamic of the derivative market without producing arbitrage.
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1.2.7 American Options

American options are more complicated derivatives than those we have considered so far.
They allow early exercise in the following sense: At any timet before expiration, you can
return the option and in exchange receive the amount of a paymentY

t

that depends on the
underlyings up to timet. One may regard the derivatives from the previous subsections (at
least the non-negative ones) as particular American options withY

T

:= Z

i

T

andY
t

:= 0

for t = 0; : : : ; T � 1. There is a well-established theory for pricing American options in
complete models (cf. Lamberton & Lapeyre (1996)). We will see that the basic arguments
and results carry over to our more general setting. To that end, we place ourselves in the set-
ting of Subsection 1.2.4 with a small exception. We assume that Securityn is an American
option on the random payout(Y

t

)

t=0;:::;T

. Fix a timet 2 f1; : : : ; Tg and suppose for the mo-
ment that either no trader exercises the option at timet� 1 or that it is even forbidden. Then
the derivativen behaves at timet � 1 as an ordinary security in the sense that it does not
suddenly vanish from the market by early exercise. Fix� > 0. By the same argumentation
as in Subsection 1.2.4 (cf. Equation (1.3)) we obtain
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�Z

j

t

�

�Z

i

t

�

�

�

F

t�1

�

= 0 (1.8)

for i = 1; : : : ; n, where('0

; : : : ; '

l

) is theu
�

-optimal strategy for the speculator in the
restricted market consisting only of the underlyings0; : : : ; l. By Statement 3 in Proposition
1.6 we conclude thatE�

(�Z

n

t

jF

t�1

) = 0, whereP � is defined as in Equation (1.4). Hence,

Z

n

t�1

= E

�

(Z

n

t

jF

t�1

): (1.9)

Now we make three weak assumptions in addition to those in Subsection 1.2.4.

1. No trader exercises the option if the market price is higher than the exercise price. He
would rather sell it on the market than exercise it.

2. The market price cannot fall below the exercise price. This is evident if we assume
the absence of arbitrage.

3. The market priceZn

t�1

at timet � 1 is � E

�

(Z

n

t

jF

t�1

). Above we have shown that
the market price would equalE�

(Z

n

t

jF

t�1

) if exercise at timet� 1 were not allowed.
Therefore, our assumption means that the additional right to exercise the option at
time t� 1 may increase but not decrease the price.

By Assumption 1 we have that Equation 1.9 holds in the caseZ

n

t�1

> Y

t�1

. If on the other
hand,Zn

t�1

is not strictly greater thanY
t�1

, then the option may suddenly vanish from the
market if everybody returns it. Speculators may thus face the short sale restriction 'n

t�1

�

0, since potential buyers can use their right to immediately exercise the option. Hence,
Equation (1.8) may no longer hold, because its derivation by Lemma 1.2 is based on the
assumption that speculators can freely choose their portfolio inR

n+1 . So Equation (1.9)
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cannot be derived in this case. On the other hand, we know by Assumption 2 that the option
price cannot fall belowY

t�1

. Thus we have

Z

n

t�1

= Y

t�1

(1.10)

in the caseZn

t�1

� Y

t�1

. Putting together Equations (1.9) and (1.10) as well as Assumption
3 yields

Lemma 1.17 Under Assumptions 1–3 we have

Z

n

t�1

= maxfY

t�1

; E

�

(Z

n

t

jF

t�1

)g (1.11)

for t = 1; : : : ; T .

SinceZn

T

= Y

T

by definition, the derivative price process is uniquely determined by the re-
cursive Equation (1.11). The process(Z

n

t

)

t=1;:::;T

is called theSnell envelopeof (Y
t

)

t=1;:::;T

(cf. Lamberton & Lapeyre (1996), Section 2.2). Using well-known results on Snellen-
velopes, we immediately obtain

Corollary 1.18 Under the assumptions of Lemma 1.17 we have that

1. Zn is the smallestP �-supermartingale such thatZn

t

� Y

t

for t = 0; : : : ; T .

2. For anyt 2 f0; : : : ; Tg, we have that

Z

n

t

= ess supfE

�

(Z

n

�

jF

t

) : � stopping time assuming values inf0; : : : ; Tgg

= E

�

(Z

n

�

t

jF

t

);

where the stopping time�
t

is defined by�
t

:= inffs � t : Z

n

s

= Y

s

g.

PROOF. Gihman & Skorohod (1979), Section 1.5 and Lamberton & Lapeyre (1996), Section
2.2. �

Let us give a short summary. In complete models it is well-known that American options
are obtained as a Snell envelope of the exercise price process. Under essentially the same
assumptions as in Subsection 1.2.4, the same is true in our general setting, where the pricing
measure is obtained as before by Equation 1.4.

1.2.8 Foreign Exchange and Stochastic Interest Rates

If the stochastic process(Y
t

)

t=0;1;:::

denotes the price of a security in terms of a foreign
currency with a random exchange rate(F

t

)

t=0;1;:::

, then the price of this asset relative to your
underlying currency is obviously given byS1

t

:= Y

t

F

t

, henceZ1

t

= Y

t

F

t

=S

0

t

in discounted
terms. Investments in foreign exchange are thus covered by our approach. But observe that
when working with more than one currency, there is more than one natural choice of the
numeraire. One may choose the fixed income investments in any of the currencies involved.
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In incomplete models the obtained optimal strategies and derivative prices depend on this
choice.

The modelling of markets with stochastic interest rates also poses no conceptual prob-
lems, since the numeraireS0 was not assumed to be deterministic. However, the dynamic
of the discounted securitiesZi

:= S

i

=S

0 may be very complex for involved interest rate
models. As in the case of foreign exchange, there is more than one natural choice of the
numeraire. Beside the money market accountS

0

t

=

Q

t

s=1

(1 + r

s

) (or S0

t

= exp(

R

t

0

r

s

ds)

in continuous-time), wherer
s

is the instantaneous interest rate, one may also take long-term
fixed-income investments (i.e. bonds). Again, the resulting strategies and prices may differ.

It is an open question whether this dependence plays an important role in practice from
a numerical point of view (for a concrete example see Section 4.1). For both cases we
propose the following guideline for the choice ofS0. For computing optimal strategies
you can choose the numeraire according to your own needs, whereas for derivative pricing
one should takeS0 to be the investment that the leading market powers consider riskless.
For example, if you are an investor from Reykjavik trading in the US equities market, you
may consider fixed-income investments in Icelandic crowns riskless, whereas US-Dollars
contain a currency risk for you. Since optimal trading in the sense of Subsection 1.2.2 is
risk-averse trading and the numeraire is by definition the benchmark of risklessness, you
should base the calculation of your optimal portfolio on Icelandic crowns. The computation
of derivative prices, however, is not based on your interests, but instead on assumptions
about how the market behaves as a whole, i.e. how influential investors trade. They are
more likely to consider US-Dollars as riskless. As a result you should takeUS-Dollar fixed-
income investments as a numeraire for model extension.



Chapter 2

Martingale Problems as a Means to
Model Dynamical Phenomena

Since the early days of analysis, time-dependent deterministic phenomena have beenmod-
elled usingderivativesand ordinary differential equations. Predictable semimartingale
characteristicsandmartingale problemscan be viewed as stochastic counterparts of these
notions, but they seem to be rarely used in the same spirit for modelling purposes.De-
tails of these concepts can be found in Jacod (1979), Jacod & Shiryaev (1987), Métivier
(1982), and Liptser & Shiryaev (1989), (1998). Here we want to present the basic ideas
underlying predictable characteristics and martingale problems starting from real analysis
and applications. Most of the statements in this chapter are reformulations or consequences
of well-known results that can be found in Jacod (1979) and Jacod & Shiryaev (1987). In
Section 2.8 we present an existence and uniqueness theorem for martingale problems under
local Lipschitz conditions. Its statement and proof are closely related to similar classical re-
sults for stochastic differential equations (SDE's), but it is new in the sense that it is directly
applicable to martingale problems. To understand everything in this chapter excepting the
proofs, semimartingale theory and stochastic calculus, as found in Jacod & Shiryaev (1979),
Chapter I, or Protter (1992), complemented by notions from Appendix A, should form a suf-
ficient background. For easier readability, we relegate all proofs to the end of therespective
sections.

2.1 Real Analysis as a Motivation

If you want to model a quantitative, time-dependent deterministic phenomenon mathemat-
ically, you may do this in terms of a functionX : R

+

! R

d , i.e.X
t

2 R

d describes the
state of your system at any timet � 0. The set of all mappingsX of that kind is usually too
large to work with in practice. In order to derive concrete results, one restricts the attention
to classes of relatively simple functions. One such class consists of alllinear mappings, i.e.
functions of the typeX : R

+

! R

d , X
t

= bt, whereb 2 R

d is a constant. Linear functions
can be used to describe systems that grow steadily through time. They are uniquely deter-

34
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mined by the constant growth rateb. Although linear mappings take you quite far in light
of their simplicity, they are of limited use when you are dealing with a system that is not
growing constantly.

A way out of this fix is to consider instead the larger class of differentiable functions.
Intuitively, a differentiablefunctionX : R

+

! R

d with derivativeb : R

+

! R

d can be
viewed as a mapping that, locally around anyt 2 R

+

, behaves as a linear function with
growth rateb

t

(more exactely:X
t+h

� X

t

+ b

t

h for small h). These functions can be
used to describe systems of approximately constant increase in small time intervals. The
great success of analysis may be due to the fact that differentiable mappings aresufficiently
regular to derive a large number of useful results, but still flexible enough to modelmany
real-world phenomena.

In the following sections, we use a slightly more general notion. A functionX : R

+

!

R

d is calledabsolutely continuousif there is a Lebesgue-integrable functionb : R
+

! R

d

(more precisely:
R

t

0

jb

s

j ds <1 for anyt � 0) such thatX
t

= X

0

+

R

t

0

b

s

ds for anyt � 0.
Since absolutly continuous functions are differentiable in�-almost allt � 0 (with derivative
b

t

) (cf. Elstrodt (1996), VII.4.12, VII.4.14), it makes sense to take absolute continuityas a
slight generalization of differentiability.

When applied e.g. in the natural sciences, dynamical phenomena are often modelled by
ordinary differential equations. The state of the system is described by a differentiable (or
absolutely continuous) functionX : R

+

! R

d . The derivativeb
t

of X, which characterizes
the local change of the system, is given as a function of the current stateX

t

(or, more
generally, of the past(X

s

)

s2[0;t]

), e.g. by the ODE

b

t

= f(X

t

; t) (or, equivalently,X
t

= X

0

+

Z

t

0

f(X

s

; s) ds);

wheref : R

d

� R

+

! R

d is a given continuous function. Under Lipschitz and growth
conditions, any ODE has a unique solution onR

+

(given a fixedX
0

2 R

d ). Since explicit
computation is often impossible, one has to fall back on numerical methods to obtainthe
solution functionX.

In the following sections we discuss stochastic analogues of the above notions.

2.2 Lévy Processes

If deterministic, time-dependent phenomena are described by a deterministic functionX :

R

+

! R

d for fixedd 2 N

� , then it seems natural to model a stochastic system by a stochas-
tic functionX, i.e. aRd -valued stochastic process.

General setting for Chapter 2 (unless otherwise stated):Our terminology is chosen as
in Jacod & Shiryaev (1987), which is abbreviated JS in the following. We fix a stochastic
basis (filtered probability space)(
;F; (F

t

)

t2R

+

; P ) in the sense of JS, Definition I.1.2, i.e.
the filtration(F

t

)

t2R

+

is right-continuous but not necessarily complete. ByX we denote a
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R

d -valued stochastic process on
 for somed 2 N

� . For what follows, we usually consider
only adapted processes with càdlàg paths. We do not distinguish between the processX as
a family of random variables(X

t

)

t2R

+

with X
t

: 
 ! R

d for any t 2 R

+

, as a mapping
X : 
�R

+

! R

d and as a mappingX : 
! (R

d

)

R

+ (orX : 
! D (R

d

) if X is càdlàg).
Moreover, equalities etc. are usually only meant up to indistinguishability.

What is the stochastic analogue of a linear function? We are looking for processes that
keep growing steadily, butsteadilyhere is to be understood in a stochastic sense. Constant
growth for linear functions means thatX

t

� X

s

depends only ont � s. Our stochastic
translation is that thedistributionof X

t

�X

s

depends only ont� s, and to avoid feedback
between successive parts of the process, thatX

t

� X

s

is independent of the�-field F
s

.
Hence, we consider processes with stationary, independent increments in the sense of the
following definition to be a natural stochastic counterpart of linear functions.

Definition 2.1 A càdlàg, adapted processX withX
0

= 0 is calledLévy process(or process
with stationary, independent increments (PIIS)) if the distribution ofX

t

�X

s

depends only
on t� s and ifX

t

�X

s

is independent ofF
s

for anys; t 2 R

+

with s � t.

Since we want to work in a semimartingale framework, the following statement is useful.

Lemma 2.2 1. Lévy processes are semimartingales.

2. A Lévy processX is a special semimartingale if and only if it isintegrable(in the
sense thatE(jX

t

j) <1 for anyt 2 R

+

, or, equivalently,E(jX
1

j) <1).

Although the general theory of stochastic processes is usually formulated in terms of semi-
martingales, we want to restrict our attention to special semimartingales, since these are
a little easier to understand from an intuitive point of view. This allows us to replace the
truncation functionh : R

d

! R

d appearing in the Lévy-Khintchine formula as well as in
the semimartingale characteristics with the identity mappingh : R

d

! R

d , x 7! x. The
difference between semimartingales and special semimartingales canbe interpreted as an
integrability condition on the jumps (cf. JS, Proposition II.2.29a). In the case of Lévy pro-
cesses, our restriction means that we consider only those with existing firstmoments, i.e. we
exclude e.g.�-stable Lévy motions with� � 1 (cf. Samorodnitsky & Taqqu (1994)). Still,
most statements can be generalized by reintroducing the truncation function.

In Section 2.1 we observe that linear functions are characterized by a constantb 2 R

d .
By the Lévy-Khintchine formula a similar statement is true for Lévy processes. Their distri-
bution is completely determined by a constant characteristic triplet(b; c; F )

L. This is another
reason why one may consider them a rightful stochastic counterpart of linear functions.

Theorem 2.3 LetX be an integrable Lévy process.

1. There is a unique triplet(b; c; F )L, consisting ofb 2 R

d , a symmetric, non-negative
definite matrixc 2 R

d�d and a measureF onRd satisfying
R

(jx

2

j ^ jxj)F (dx) <1

andF (f0g) = 0, such that for anyt 2 R

+

we have
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(a)
B

t

= bt;

whereB 2V

d is the predictable part of finite variation in the canonical de-
composition of the special semimartingaleX,

(b)
hX

i;c

; X

j;c

i

t

= c

ij

t for anyi; j 2 f1; : : : ; dg;

(c)
�([0; t]�G) = F (G)t for anyG 2 B

d

; (2.1)

where� denotes the compensator of the random measure of jumps�

X ofX (cf.
Definition A.3 in Appendix A).

2. The triplet(b; c; F )L uniquely determines the distribution ofX.

3. We have

E(e

iu�X

t

) = exp

�

t

�

iu � b�

1

2

u

>

cu+

Z

(e

iu�x

� 1� iu � x)F (dx)

��

(2.2)

for anyt 2 R

+

and anyu 2 R

d .

Definition 2.4 We call(b; c; F )L from the previous theorem thecharacteristic tripletof the
Lévy processX.

Remarks.

1. A deterministic processX (i.e.X
t

(!) does not depend on!) is a Lévy process if and
only if X(!) : R

+

! R

d is a linear function, i.e.X
t

= bt for someb 2 R

d . Its
characteristic triplet is(b; 0; 0)L.

2. A continuous, adapted,R-valued process is a Lévy process if and only if it is a Wiener
process with drift (more precisely, if it is of the formX

t

= bt+ �W

t

for someb 2 R,
� 2 R

+

and (if� 6= 0) some standard Wiener processW ). Its characteristic triplet is
(b; �

2

; 0)

L.

3. Any càdlàg Poisson processX with arrival rate� 2 R

+

(in the sense of Protter (1992),
Section I.3) is a Lévy process with characteristic triplet(�; 0; �"

1

)

L.

4. Intuitively speaking, an arbitrary integrable Lévy process can be interpreted as an in-
dependent sum of a linear function with derivativeb, ad-dimensional Wiener process
with covariance matrixc and a (possibly uncountable) number of rescaled,compen-
satedPoisson processes, whereF (G) dt is the probability of a jump of size�X

t

2 G

in an infinitesimal interval of lengthdt (cf. Figure 2.1). Compensation basically means
subtracting a predictable drift (which is even deterministic and linear for Poisson pro-
cesses) to transform the process into a local martingale. If the jump measureF is
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Figure 2.1: Sample paths of Lévy processes with characteristic triplets(3; 0; 0)

L,
(0; 10; 0)

L, (0; 0; 10"
1

)

L and(3; 10; 10"
1

)

L, respectively

finite, one may view the Lévy process alternatively as an additive superposition of a
linear drift (generally with derivative6= b), a Wiener process and rescaled,uncompen-
satedPoisson processes. But for unboundedF , this interpretation is not appropriate.

5. An integrable Lévy process is a martingale if and only ifb = 0.

There is another way in which Lévy processes are “linear,” as is shown in Lemma 2.6.

Definition 2.5 LetX be a special semimartingale. We call(B;C; �)

I the integral charac-
teristicsof X, where

1. B 2V

d is the predictable part of finite variation in the canonical decomposition of
X,

2. C 2V

d�d is the continuous process defined byCij

:= hX

i;c

; X

j;c

i for any i; j 2
f1; : : : ; dg,

3. � is the compensator of the random measure of jumps�

X of X.

Remarks.

1. The integral characteristics(B;C; �)I are not the characteristics(B(h); C; �) of X
in JS, Definition II.2.6 (or Jacod (1979), Definition 3.46, from now on denoted as
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(B(h); C; �)

JS), but they are closely related. By JS, Proposition II.2.29a the only
difference is that

B(h) = B � (x� h(x)) � �; (2.3)

whereh : R

d

! R

d is the truncation function in this definition. We see that if we
choseh(x) = x (which is not allowed for arbitrary semimartingales, cf. JS, Definition
II.2.3), then both notions would coincide.

2. In the above definition one observes that the first part of the integral characteristics
tells us about the drift ofX (sinceX �B is a local martingale), the second part about
the continuous part of unbounded variation and the third about the jumps.

Lemma 2.6 Let X be a special semimartingale,b 2 R

d , c 2 R

d�d symmetric and non-
negative definite andF a measure onRd such that

R

(jx

2

j ^ jxj)F (dx) <1 andF (f0g) =
0. Then we have equivalence between

1. X is an integrable Lévy process with characteristic triplet(b; c; F )

L.

2. The integral characteristics(B;C; �)I of X are linear in the sense thatB
t

= bt,
C

t

= ct, �([0; t]�G) = F (G)t for anyt 2 R

+

,G 2 B

d.

Proofs

Proposition 2.7 LetX be a semimartingale and� the compensator of the measure of jumps
�

X . Then we have equivalence between

1. X is a special semimartingale.

2. (jxj2 ^ jxj) � � 2 A
loc

3. For anyt 2 R

+

, we have(jxj2 ^ jxj) � �
t

<1 P -almost surely.

PROOF. 1, 2: cf. JS, II.2.29a
2) 3: This is obvious.
3) 2: The last statement implies that(jxj

2

^ jxj) � � 2V which, by JS, I.3.10, means
that it is also inA

loc

. �

Proposition 2.8 Let � be an integer-valued random measure with compensator� and let
W : 
 � R

+

� E ! R be predictable, where(E;E) denotes a Blackwell space. Assume
that� is of the form�(dt; dx) = F

t

(dx) dA

t

for some transition kernelF from (
� R

+

;P)

into (E;E) and an increasing functionA as in Definition 2.15. IfE((jW j

2

^jW j)��

T

) <1

for T 2 R

+

, thenW � (�� �) is a uniformly integrable martingale on[0; T ].

PROOF. SinceW = W1

fjW j�1g

+ W1

fjW j>1g

, we may assume that eitherjW j � 1 or
jW j > 1. If jW j > 1, thenE(jcW

t

j) < 1 for t 2 � \ [0; T ] andcW
t

= 0 for t =2 �. By
j� \ [0; T ]j < 1, we haveE(jcW j � �

T

) < 1. Since alsoE(jW j � �

T

) < 1, we have
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C(W1

[0;T ]

) 2 A

+ and hence, by JS, II.1.33b,(W � (���))

T

2 A . Thus,(W � (���))

T

is a local martingale of class(D), hence a uniformly integrable martingale (JS, I.1.47c).
The proof forjW j � 1 is similar, but using JS, II.1.33a and the fact that a square-integrable
martingale is uniformly integrable. �

PROOF OFLEMMA 2.2. 1. cf. JS, II.4.19
2. ): By JS, II.4.19 the characteristics(B(h); C; �)JS ofX are of the formB(h)

t

=

e

bt,
C

t

= ct, �(dt; dx) = F (dx)dt for deterministiceb; c; F . SinceX is a special semimartingale
we have, by Proposition 2.7,t

R

(jxj

2

^ jxj)F (dx) = (jxj

2

^ jxj) � �

t

< 1 P -almost
surely for anyt 2 R

+

, and hence
R

(jxj

2

^ jxj)F (dx) < 1. Therefore, we haveE((jxj2 ^
jxj) � �

t

) < 1 for any t 2 R

+

. By Proposition 2.8 we conclude thatx � (�X � �) is a
martingale. Moreover,Xc is a martingale, becauseE(hX i;c

; X

i;c

i

t

) = c

ii

t < 1 for any
i 2 f1; : : : ; dg, t 2 R

+

(cf. JS, I.4.50). Finally, the last part in the canonical decomposition
X = X

0

+X

c

+ x � (�

X

� �) + A of the special semimartingaleX (cf. JS, II.2.38), is, by
JS, II.2.29a, deterministic (and linear in time). HenceA

t

is integrable for anyt 2 R

+

.
(: W.l.o.g.d = 1. If X

1

is integrable, we have
R

(jxj

2

^ jxj)F (dx) < 1 (cf. Wolfe
(1971), Theorem 2) and hence(jxj2^jxj)��

t

= t

R

(jxj

2

^jxj)F (dx) <1 P -almost surely
for anyt 2 R

+

. By Proposition 2.7,X is a special semimartingale. �

PROOF OF THEOREM 2.3. 1. The existence ofc; F is stated in JS, II.4.19. For the
integrability condition onF , cf. the previous proof. By JS, II.4.19 and II.2.29a the process
B is also linear and deterministic. The uniqueness ofb; c; F follows at once.

2. This follows from Statement 3, sincePX

1 uniquely determines the distribution of a
Lévy processX.

3. From Statement 1 (and JS, II.2.29a) we know that the characteristics(B(h); C; �)

JS

are of the formB(h)
t

= bt �

R

(x � h(x))F (dx)t, C
t

= ct, �(dt; dx) = F (dx)dt. By JS,
II.4.19, we have

E(e

iu�X

t

) = exp

�

t

�

iu �

�

b�

Z

(x� h(x))F (dx)

�

�

1

2

u

>

cu

+

Z

(e

iu�x

� 1� iu � h(x))F (dx)

��

= exp

�

t

�

iu � b�

1

2

u

>

cu+

Z

(e

iu�x

� 1� iu � x)F (dx)

��

;

where theF -integrability of (x � h(x)) e.g. forh(x) = x1

fjxj�1g

has been shown in the
proof of Lemma 2.2. �

PROOF OF THE REMARKS. 1. If X is deterministic, then its characteristic triplet is(b; 0; 0)

L

for someb 2 R, since a deterministic local martingale starting in0 is 0.
2. If X is a continuous Lévy-process withc 6= 0, thenW := (

1

p

c

(X

t

� bt))

t2R

+

is a
continuous local martingale withhW;W i

t

= t, hence a standard Wiener process (cf. JS,
II.4.4).
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3. This follows from the definition and from Equation (2.2).
5. The “if”-part follows from the proof of Lemma 2.2, where we have shown the local

martingale part of the special martingaleX to be a martingale. �

PROOF OFLEMMA 2.6. By Theorem 2.3 we have1 ) 2. The converse follows from JS,
II.4.19 and Statement 2 of Lemma 2.2. �

We will occasionally need the following statement relating the moments of aLévy process
to those of its Lévy measure.

Proposition 2.9 LetX be a real-valued integrable Lévy process with characteristic triplet
(b; c; F )

L.

1. For anyp 2 [1;1), we have equivalence between

(a) E(jX
1

j

p

) <1.

(b) E(jX
t

j

p

) <1 for anyt 2 R

+

.

(c)
R

jxj

p

1

fjxj�1g

F (dx) <1.

2. For anyp 2 R

+

, we have equivalence between

(a) E(exp(pjX
1

j)) <1.

(b) E(exp(pjX
t

j)) <1 for anyt 2 R

+

.

(c)
R

exp(pjxj)1

fjxj�1g

F (dx) <1.

If any of these conditions holds, thenE(exp(pX
t

)) = (E(exp(pX

1

))

t for anyt 2 R

+

.

PROOF. We will only prove the second statement. The first one follows along the same lines.
Fix p 2 R

�

+

.
(b))(a): This is obvious.
(a))(c): Since the distribution ofX

1

is infinitely divisible with Lévy measureF , it
follows from Wolfe (1971), Theorem 2 thatE(exp(pjX

1

j)) <1 if and only if
R

exp(pjxj)

1

fjxj�1g

F (dx) <1.
(c))(b): Let t 2 R

�

+

. By Theorem 2.3, we have thatX
t

has an infinitely divisible
distribution with Lévy measuretF . From Wolfe (1971), Theorem 2, we conclude that
E(exp(pjX

t

j)) <1.
It remains to show the equalityE(exp(pX

t

)) = (E(exp(X

1

)))

t for anyt 2 R

+

. Firstly,
suppose thatt 2 Q , sayt = n=m for n;m 2 N

� . SinceX has independent and station-
ary increments, we have thatE(exp(pX

1

)) = (E(exp(pX

1

m

)))

m andE(exp(pX n

m

)) =

(E(exp(pX

1

m

)))

n, which yields the claim fort. For arbitraryt 2 R

+

, consider a se-
quencet

n

# t in Q . Sincet 7! exp(pX

t

) is right-continuous, Fatou's lemma implies that
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E(exp(pX

t

)) � lim

n!1

E(exp(pX

t

n

)) = e

tC , whereC := log(E(exp(pX

1

))). Again
using the independent, stationary increments, we have

e

([t]+1)C

= E(exp(pX

[t]+1

))

= E(exp(pX

t

))E(exp(pX

[t]+1�t

))

� e

tC

e

([t]+1�t)C

= e

([t]+1)C

for any t 2 R

+

. Hence, the inequality is actually an equality. This is only possible if
E(exp(pX

t

)) = e

tC , which proves the claim. �

2.3 Grigelionis Processes and their Derivative

In the previous section, we found Lévy processes to be in some sense “stochastic linear
functions.” Now we want to define a reasonable stochastic counterpart oflocally linear (i.e.
differentiable or absolutely continuous) functions and their derivative. To that end, we focus
on Lemma 2.6. Since Lévy processes are the semimartingales whose integral characteristics
are linear in time, we consider those processes whose integral characteristics are pathwise
absolutly continuous in time to be a stochastic analogue of absolutly continuous functions.
For want of a shorter name we call themGrigelionis processes, since they are studied by
Grigelionis in a series of papers (cf. Grigelionis (1973)). Let us begin with a

Lemma 2.10 LetX be a special semimartingale with integral characteristics(B;C; �)

I.
Then there exists a predictable, real-valued processA 2 A

+

loc

, a predictableRd -valued
process(b

t

)

t2R

+

, a predictableRd�d -valued process(c
t

)

t2R

+

whose values are symmetric,
non-negative definite matrices and a transition kernelF from (
 � R

+

;P) into (R

d

;B

d

)

such that for anyt 2 R

+

we have

B

t

=

Z

t

0

b

s

dA

s

;

C

t

=

Z

t

0

c

s

dA

s

;

�([0; t]�G) =

Z

t

0

F

s

(G) dA

s

for anyG 2 B

d

:

Remark. We usually drop the argument! in the notation of transition kernels from(
 �
R

+

;P) into (R

d

;B

d

), as is done for stochastic processes.

Definition 2.11 We call a special semimartingaleX as in the previous lemmaGrigelionis
processor locally infinitely divisble processif A can be chosen such that its pathsA(!) :

R

+

! R are absolutely continuous in time.

The following lemma shows that a special semimartingale is a Grigelionisprocess if and
only if its integral characteristics are absolutely continuous.



2.3. Grigelionis Processes and their Derivative 43

Lemma 2.12 LetX be a special semimartingale with integral characteristics(B;C; �)

I.
Then we have equivalence between

1. X is a Grigelionis process.

2. There exist a predictableRd -valued process(b
t

)

t2R

+

, a predictableRd�d -valued pro-
cess(c

t

)

t2R

+

whose values are symmetric, non-negative definite matrices and a tran-
sition kernelF from (
� R

+

;P) into (R

d

;B

d

) such that for anyt 2 R

+

we have

B

t

=

Z

t

0

b

s

ds;

C

t

=

Z

t

0

c

s

ds;

�([0; t]�G) =

Z

t

0

F

s

(G) ds for anyG 2 B

d

:

Definition 2.13 Let X be a Grigelionis process. We call any triplet(b; c; F )

D with b; c; F
as in Lemma 2.12differential characteristicsor aderivativeof X.

Remark. Grigelionis (1973) calls a similar object (the difference being that it corresponds
to the truncation functionh(x) = x1

[0;1]

(jxj) instead ofh(x) = x) local characteristicsof
the process. We avoid this term here, since it is used by Jacod (1979) and Métivier (1982) to
denote the integral characteristics(B(h); C; �)

JS (calledcharacteristicsin JS) or(B;C; �)I,
respectively.

Lemma 2.14 Any two derivatives of a Grigelionis process coincide outside some(P 
 �)-
null setN 2 P.

By Lemma 2.6 the derivative of any integrable Lévy process can be chosen deterministic
and constant. Moreover, it coincides with its characteristic triplet.For general Grigelionis
processes one may interpret the derivative(b; c; F )

D so that, locally aroundt 2 R

+

, the pro-
cess statistically resembles a Lévy process with driftb

t

(!), Brownian part with covariance
matrix c

t

(!) and local jump intensityF ((!; t); �). It would be nice to support this way of
talking with an appropriate limit theorem.

Remark. A Grigelionis processX with derivative(b; c; F )D has (P -almost surely) only
continuous paths if and only ifF = 0 (P 
 �)-almost surely.

Examples.

1. LetX be a deterministic process with absolutely continuous, càdlàg paths (e.g.X :

R

+

! R

d differentiable). ThenX is a Grigelionis process with derivative((X 0

t

)

t2R

+

;

0; 0)

D.
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2. LetX be aR-valuedItô process, i.e.X
t

= X

0

+

R

t

0

�

s

ds+

R

t

0

�

s

dW

s

, whereW is a
standard Wiener process and�; � are predictable, locally boundedR-valued processes
with � � 0. ThenX is a Grigelionis process with derivative(�; �2; 0)D.

One should be aware that the analogy between derivatives for deterministic functions
on the one hand and differential characteristics for Grigelionis processes on the other hand
is limited. A differentiable functionX : R

+

! R

d is uniquely determined byX
0

and its
derivative(X 0

t

)

t2R

+

. But it is generally not true that, given some stochastic basis(
;F;

(F

t

)

t2R

+

; P ), as well as the starting valueX
0

and the derivative(b; c; F )D of a Grigelionis
processX : 
 ! D (R

d

), the whole processX as a mapping could be recovered. Usually,
not even the distributionPX ofX (onD(R

d

)) is uniquely determined by the given informa-
tion (unless the derivative is deterministic). As an example, consider some filtered probabil-
ity space(
;F; (F

t

)

t2R

+

; P ) and two real-valued, independent standard Wiener processes
U; V on that space. Moreover, we define a stopping timeT := infft � 0 : U

t

= 1g. It is easy
to see that bothUT andV T are Grigelionis processes with derivative(0; (1

[0;T ]

(t))

t2R

+

; 0)

D.
But sinceP (lim

n!1

U

T

n

= 1) = P (U

T

= 1) = 1 6= P (V

T

= 1) = P (lim

n!1

V

T

n

= 1),
the laws ofUT andV T obviously differ.

Nevertheless, this non-uniqueness is not important from a practical point of view. For
use in applications we are rather interested in an analogue of ordinary differential equations.
In these the derivative is not given explicitly, but in terms of the unknown solution process
itself. The stochastic translation would be that we are given the derivative b

t

; c

t

; F

t

of a
Grigelionis processX at timet as a deterministic function of the current valueX

t

(!) (or,
more generally, the past(X

s

)

s2[0;t]

(!)). As in real analysis, the question of existence and
uniqueness of solutions arises. It is immediately clear that we can only hope for unique-
ness in the sense of distributions, since even for a deterministic derivative(0; 1; 0)D (which
corresponds to any standard Wiener process), only the distribution is determined, but not
the process itself as a mappingX : 
 ! D (R

d

). We formally introduce the stochastic
counterpart of an ODE under the notionmartingale problemin Section 2.7. The term is
approximately in line with Jacod (1979) and Jacod & Shiryaev (1987), where the integral
characteristics(B(h); C; �)JS are considered instead of(b; c; F )D (making their approach
more general).

Proofs

PROOF OFLEMMA 2.10. This follows from JS, II.2.9 and Equation (2.3). �

PROOF OFLEMMA 2.12. 1 ) 2: SinceA is predictable, one can find a non-negative,
predictable process(a

t

)

t2R

+

such thatA =

R

�

0

a

t

dt (cf. JS, I.3.13). Now leteb
t

:= b

t

a

t

,
ec

t

:= c

t

a

t

, eF
t

(dx) := F

t

(dx)a

t

for anyt 2 R

+

. �

PROOF OFLEMMA 2.14. This follows from Lemma 2.19 and 2.18 in the following section.
�
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PROOF OF THE REMARK. If its compensator� is 0, then�X = 0 by JS, II.1.8(i). ThusX
is continuous. �

2.4 Extended Grigelionis Processes

Unlike linear functions, Lévy processes may have jumps, but the probability of a jump at
any fixed time is still 0. The same is true for Grigelionis processes. Thisfact makes them
useless for discrete-time models, where any process changes its value only at fixed (e.g. in-
teger) times. Therefore, we want to extend the class of semimartingalesunder consideration
slightly to be able to apply the results to discrete-time and mixed settings as well.

Definition 2.15 LetX be a special semimartingale. If in Lemma 2.10 the processA can be
chosen as

A

t

= t+

X

s�t

1

�

(s) for anyt 2 R

+

;

where� � R

�

+

is a discrete (and hence at most countable) set of times, then we callX an
extended Grigelionis process.

Lemma 2.16 LetX be a special semimartingale with integral characteristics(B;C; �)

I.
Then we have equivalence between

1. X is an extended Grigelionis process.

2. There exists a discrete set� � R

�

+

, a predictableRd -valued process(b
t

)

t2R

+

, a
predictableRd�d -valued process(c

t

)

t2R

+

whose values are symmetric, non-negative
definite matrices and a transition kernelF from (
 � R

+

;P) into (R

d

;B

d

) such that
for anyt 2 R

+

we have

B

t

=

Z

t

0

b

s

ds+

X

s2�\[0;t]

�B

s

;

C

t

=

Z

t

0

c

s

ds;

�([0; t]�G) =

Z

t

0

F

s

(G) ds+

X

s2�\[0;t]

�(fsg �G) for anyG 2 B

d

:

3. There exists a discrete set� � R

�

+

, a (F 
 B

+

)-measurableRd -valued process
(b

t

)

t2R

+

, a (F
B
+

)-measurableRd�d -valued process(c
t

)

t2R

+

whose values are sym-
metric, non-negative definite matrices and a transition kernelF from(
�R

+

;F
B

+

)

into (R

d

;B

d

) such that for anyt 2 R

+

the equations in Statement 2 hold.
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Definition 2.17 For any choice as in the previous lemma, we call(�; P

X

0

; b; c; F;K)

E ex-
tended (differential) characteristicsof the extended Grigelionis processX, where the tran-
sition kernelK from (
� R

+

;P) into (R

d

;B

d

) is defined by

K

t

(G) :=

�

�(ftg �G) + "

0

(G)(1� �(ftg � R

d

)) if t 2 �

0 else.

Remarks.

1. ForP -almost all! 2 
 and anyt 2 � we have thatK((!; t); �) is a probability
measure.

2. For anyt 2 �, we have�B
t

=

R

xK

t

(dx) P -almost surely.

3. For anyt 2 � and anyG 2 B

d (or anyt 2 R

+

and anyG 2 B

d with 0 =2 G) we have

P

�X

t

jF

t�

(G) = K

t

(G) P -almost surely:

4. Intuitively, an extended Grigelionis process with extended differential characteristics
(�; P

X

0

; b; c; F;K)

E is a locally infinitely divisible process with derivative(b; c; F )D

plus some jumps at fixed timest 2 �. These are characterised by the conditional
jump distributionsK

t

for t 2 �. The initial distributionPX

0 has been added to the
characteristics for later use.

The extended characteristics are unique in the following sense.

Lemma 2.18 LetX be an extended Grigelionis process with extended characteristics(�;

P

X

0

; b; c; F;K)

E. Then

1. For anyt 2 R

+

we have

Z

t

0

Z

(jxj

2

^ jxj)F

s

(dx) ds <1 P -almost surely:

There is a(P 
 �)-null setN 2 P such that for any(!; t) 2 NC we have
Z

(jxj

2

^ jxj)F ((!; t); dx) <1:

There is an evanescent setN 2 P such that for any(!; t) 2 NC we have
Z

jxjK((!; t); dx) <1:

2. Let (e�; PX

0

;

e

b;ec;

e

F;

e

K)

E be other extended characteristics ofX. Then there is a
(P 
�)-null setN 2 P such thatb; c; F andeb;ec; eF coincide outsideN . Moreover, we
haveK((!; t); � \ (R

d

n f0g)) =

e

K((!; t); � \ (R

d

n f0g)) up to indistinguishability.
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Lemma 2.19 Let X be a special semimartingale. For any discrete set� � R

�

+

there is
equivalence between

1. X is a Grigelionis process with derivative(b; c; F )D.

2. X is an extended Grigelionis process with extended characteristics(�; P

X

0

; b; c; F;

("

0

)

t2�

)

E.

In a discrete-time setting the extended characteristics are particularly easy.

Lemma 2.20 Assume that the filtration as well as the adapted processX are discrete (in
the sense of Definition A.4 in Appendix A). Then there is equivalence between

1. X is an extended Grigelionis process.

2. X is a special semimartingale.

3. For anyt 2 N

� we have
R

jxjP

�X

t

jF

t�1

(dx) <1 P -almost surely:

In this case(N� ; PX

0

; 0; 0; 0; K)

E are extended characteristics forX, where

K

t

:=

�

P

�X

t

jF

t�1 for t 2 N

�

0 for t 2 R

+

n N

�

:

Remark. It should be obvious how to transfer Lemma 2.20 to an arbitrary discrete set
� � R

�

+

, i.e. if we consider a�-discrete filtration and a�-discrete process in the following
sense. We call the filtration(F

t

)

t2R

+

(or the processX) �-discreteif the mappingt 7! F

t

is constant (resp. the mappingt 7! X

t

(!) is constant forP -almost all! 2 
) on the open
intervals between neighbouring points of� [ f0;1g.

For later proofs we now relate extended differential characteristics andsemimartingale char-
acteristics as in Jacod (1979) and JS.

Lemma 2.21 LetX be a special semimartingale andh a truncation function as in JS, Def-
inition II.2.3.

1. IfX is an extended Grigelionis process with extended characteristics(�; P

X

0

; b; c; F;

K)

E, then its characteristics(B(h); C; �)JS in the sense of JS, Definition II.2.6 are
given by

�([0; t]�G) :=

Z

t

0

F

s

(G) ds+

X

s2�\[0;t]

K

s

(G n f0g) (2.4)

B(h)

t

:=

Z

t

0

b

s

ds+

X

s2�\[0;t]

xK

s

(dx) +

Z

[0;t]�R

d

(h(x)� x) �(ds; dx) (2.5)

C

t

:=

Z

t

0

c

s

ds (2.6)

for anyt 2 R

+

; G 2 B

d.
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2. If the semimartingale characteristics(B(h); C; �)JS ofX can be written as in Equa-
tions (2.4) – (2.6) for some discrete set� � R

�

+

, some predictableRd -valued process
(b

t

)

t2R

+

, some predictableRd�d -valued process(c
t

)

t2R

+

whose values are symmetric,
non-negative definite matrices and some transition kernelsF;K from(
�R

+

;P) into
(R

d

;B

d

), where K is a probability measure for(!; t) 2 
 � � and 0 (as a measure)
for (!; t) 2 
 � (R

+

n �), thenX is an extended Grigelionis process with extended
characteristics(�; PX

0

; b; c; F;K)

E.

The following result concerns stochastic integrals with respect to extendedGrigelionis pro-
cesses.

Lemma 2.22 LetX be an extended Grigelionis process with extended characteristics(�;

�; b; c; F;K)

E, and letH ij

= (H

ij

t

)

t2R

+

be predictable, locally bounded processes fori 2

f1; : : : ; d

0

g, j 2 f1; : : : ; dg. ThenY , defined byY i

:=

P

d

j=1

R

�

0

H

ij

s

dX

j

s

for i = 1; : : : ; d

0,

is an extended Grigelionis process with extended characteristics(�; "

0

;

e

b;ec;

e

F;

e

K)

E, where

e

b

i

t

=

d

X

�=1

H

i�

t

b

�

t

;

ec

ik

t

=

d

X

�;=1

H

i�

t

c

�

t

H

k

t

;

e

F

t

(G) =

Z

1

Gnf0g

�

d

X

j=1

H

�j

t

x

j

�

F

t

(dx);

e

K

t

(G) =

Z

1

G

�

d

X

j=1

H

�j

t

x

j

�

K

t

(dx)

for anyt 2 R

+

, anyi; k 2 f1; : : : ; d0g and anyG 2 B

d

0

.

We need the following technical result for Chapter 4.

Lemma 2.23 LetX be an extended Grigelionis process with extended characteristics(�;

P

X

0

; b; c; F;K)

E. Moreover, let(G
t

)

t2R

+

be another filtration onF such that for anyt 2 R

+

we haveF
t

� G

t

� �(F

t

[ C), whereC is a sub-�-field ofF that is independent ofF
1�

:=

�(

S

t2R

+

F

t

). Then on the space(
;F; (G
t

)

t2R

+

; P ), X is still an extended Grigelionis
process with the same extended characteristics.

Proofs

PROOF OFLEMMA 2.16. 1 ) 2: We haveB
t

=

R

t

0

b

s

dA

s

=

R

t

0

b

s

ds +

P

s2�\[0;t]

b

s

=

R

t

0

b

s

ds +

P

s2�\[0;t]

�B

s

, and similarly forC and�. Note thatC is, by definition, contin-
uous.
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3 ) 1: From the proof of JS, Proposition II.2.9 and Equation 2.3, it follows thatA in
Lemma 2.10 can be chosen as

A =

d

X

i=1

Va(Bi

� (x

i

� h

i

(x)) � �) +

d

X

i;j=1

Va(Cij

) + (jxj

2

^ 1) � �:

Thus,A is absolutely continuous with respect to(t +
P

s�t

1

�

(s))

t2R

+

. Statement 1 now
follows as in the proof of Lemma 2.12, 1)2. �

PROOF OF THE REMARKS. 1. This follows from JS, II.1.17b.
2. We have�X

t

= �B

t

+ �(x � (�

X

� �))

t

= �B

t

+ �X

t

� �(x � �)

t

. Hence,
�B

t

= �(x � �)

t

=

R

xK

t

(dx) P -almost surely for anyt 2 �.
3. P (�X

t

2 G n f0gjF

t�

) = E(�

X

(ftg� (G n f0g))jF

t�

) = E(�(ftg� (G n f0g)) +

W � (�

X

� �)

t

jF

t�

), whereW (s; x) = 1

ftg�(Gnf0g)

(s; x). Since� is predictable and by JS,
I.2.27, the right-hand side equals�(ftg � (G n f0g)) = K

t

(G n f0g). �

PROOF OFLEMMA 2.18. 1. SinceX is a special semimartingale, we have, by Proposition
2.7,

Z

t

0

Z

(jxj

2

^ jxj)F

s

(dx) ds+

X

s2�\[0;t]

Z

(jxj

2

^ jxj)K

s

(dx) = (jxj

2

^ jxj) � �

t

<1

P -almost surely for anyt 2 R

+

. This implies the first statement.
2. LetE denote a countable\-stable generator ofBd and defineN := f(!; t) : b(!; t) 6=

e

b(!; t) or c(!; t) 6= ec(!; t) or F ((!; t); G) 6= e

F ((!; t); G) for someG 2 Eg. One easily
sees thatN 2 P and(P 
 �)(N) = 0. Similarly forK. �

PROOF OFLEMMA 2.19. 1) 2: Take� = ?.
2 ) 1: By Remark 2 we have�B

t

=

R

x "

0

(dx) = 0 P -almost surely for anyt 2 �.
Hence,X is a Grigelionis process. �

PROOF OFLEMMA 2.20. A discrete process is a semimartingale if and only if it is adapted
(cf. JS, Subsection I.4g). Moreover, we have�((R

+

nN

�

)�R

d

) = 0 P -almost surely, since
�

X

((R

+

n N

�

)� R

d

) = 0.
2) 3: By Remark 3 we haveP�X

t

jF

t�

(G n f0g) = �(ftg� (G n f0g)) for anyG 2 B

d

P -almost surely. SinceF
t�

= F

t�1

and by Proposition 2.7, we have
R

jxjP

�X

t

jF

t�1

(dx) �

1 +

R

(jxj

2

^ jxj) �(ftg � dx) <1 P -almost surely for anyt 2 N .
3 ) 1: It suffices to prove thatX is a special semimartingale. The form of the integral

characteristics in Lemma 2.16 then follows from the fact thatX is discrete. By�((R
+

n

N

�

)� R

d

) = 0, byP�X

t

jF

t�1

(� n f0g) = �(ftg � (� n f0g)) for t 2 N

� and by assumption,
it follows that(jxj2 ^ jxj) � �

t

� 0 +

P

s2N

�

\[0;t]

R

jxjP

�X

s

jF

s�1

<1 P -almost surely for
anyt 2 R

+

. By Proposition 2.7,X is a special semimartingale.
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The shape of the characteristics follows once more from Remark 3. �

PROOF OFLEMMA 2.21. 1. This follows immediately from Remark 2 and Equation (2.3).
2. By Equation (2.4) we have thatK

t

(G n f0g) = �(ftg � G n f0g) for any t 2 �,
G 2 B

d. Statement 2 then follows from Equation (2.3). �

Proposition 2.24 LetX be an extended Grigelionis process with extended characteristics
(�; �; b; c; F;K)

E andW : 
�R

+

�R

d

! R

d

0

a predictable mapping withW i

2 G

loc

(�

X

)

for i = 1; : : : ; d. Then the local martingaleY := W � (�

X

� �) is an extended Grigelionis
process inRd

0

with extended characteristics(�; "
0

; 0; 0;

e

F;

e

K)

E, where

e

F

t

(G) =

Z

1

Gnf0g

(W (t; x))F

t

(dx)

for anyt 2 R

+

and anyG 2 B

d

0

. (We do not say anything abouteK here.)

PROOF. SinceY is a special semimartingale without drift and continuous local martin-
gale part, we only have to prove that the compensator�

Y of the jump measure�Y is ab-
solutely continuous with respect toA from Definition 2.15. Note that, by definition of
W � (�

X

� �), we have, up to an evanescent set,�Y

t

1

�

C (t) = W (t;�X

t

)1

�

C (t). Hence,
�

Y

([0; t] � G) =

R

[0;t]�R

d

1

Gnf0g

(W (s; x))1

�

C(s)�

X

(ds; dx) + �

Y

((� \ [0; t]) � G) for

any t 2 R

+

, G 2 B

d

0

. By the form of� in Lemma 2.16, we have�Y ([0; t] � G) =

R

t

0

R

1

Gnf0g

(W (s; x))F

s

(dx) ds+ �

Y

((� \ [0; t])�G) for anyt 2 R

+

,G 2 B

d

0

, where�Y

denotes the compensator of�Y . By Lemma 2.16 we are done. �

Remark. The previous proposition still holds if we replace�X with any integer-valued ran-
dom measure� whose compensator is absolutely continuous with respect to the processA

in Definition 2.15.

PROOF OF LEMMA 2.22. If X = X

0

+ B + X

c

+ x � (�

X

� �) denotes the decom-
position of the special semimartingaleX in the sense of JS, II.2.38, we obviously have
Y

i

=

R

�

0

H

i�

s

�dB

s

+

R

�

0

H

i�

s

�dX

c

s

+(

P

d

j=1

H

ij

s

x

j

)�(�

X

��), where the terms are a predictable
one of finite variation, a continuous local martingale, and a discontinuous local martingale,
respectively. Moreover, fromB

t

=

R

t

0

b

s

ds +

P

s2�\[0;t]

�B

s

andC
t

=

R

t

0

c

s

ds for any

t 2 R

+

, we immediately obtain that the first two of the integral characteristics ( eB; eC; e�)I of
Y are as in Lemma 2.16, but witheb;ec instead ofb; c. By Proposition 2.24 it follows that also
(

P

d

j=1

H

�j

s

x

j

) � (�

X

� �) and henceY altogether is an extended Grigelionis process. More-

over, we have that the extended characteristics ofY are(�; "
0

;

e

b;ec;

e

F;

e

K)

E, whereeF is, by
Proposition 2.24, as in Lemma 2.22. It remains to show thate

K is of the claimed form. By
Remark 3 in this section we have thateK

t

(G) = P

�Y

t

jF

t�

(G) for anyt 2 � and anyG 2 B

d

0

.
Since�Y

t

=

P

d

j=1

H

�j

�X

j

t

, it follows that eK
t

(G) =

R

1

G

(

P

d

j=1

H

�j

x

j

)P

�X

t

jF

t�

(dx),
which, byP�X

t

jF

t�

= K

t

, yields the claim. �
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PROOF OF LEMMA 2.23. Firstly, we prove that any(F
t

)

t2R

+

-local martingale is also a
(G

t

)

t2R

+

-local martingale. Since any(F
t

)

t2R

+

- stopping time is also a(G
t

)

t2R

+

- stopping
time, it suffices to prove the claim for martingales instead of local martingales. By Ja-
cod (1979), (9.29) we have to show thatE(E(XjF

1�

)jG

t

) = E(XjF

t

) P -almost surely
for any bounded random variable and anyt 2 R

+

. By Bauer (1978), Satz 54.4 we have
E(E(XjF

1

)j�(F

t

[ C)) = E(E(XjF

1

)jF

t

) P -almost surely. TakingE(�jG
t

) yields the
claim.

By Lemma 2.21 we have that the characteristics(B(h); C; �)

JS ofX are given by Equa-
tions (2.4) – (2.6). By JS, II.2.42 this is equivalent to the fact that for any boundedC

2-
functionf : R

d

! R, the process

Y := f(X)� f(X

0

)�

d

X

i=1

Z

�

0

D

i

f(X

s�

) dB(h)

i

s

�

1

2

d

X

i;j=1

Z

�

0

D

ij

f(X

s�

) dC

ij

s

�

�

f(X

�

+ x)� f(X

�

)�

d

X

i=1

D

i

f(X

�

)h

i

(x)

�

� �

is a local martingale. By the reasoning above we have thatY is also a(G
t

)

t2R

+

-local mar-
tingale. Again applying JS, II.2.42, the characteristics ofX relative to the space(
;F;
(G

t

)

t2R

+

; P ) are still(B(h); C; �)JS. Statement 2 of Lemma 2.22 now yields Lemma 2.23.
�

2.5 Itô's Formula for Extended Characteristics

Itô's formula can also be expressed in terms of extended characteristics. If we look upon
these as a derivative (as in Section 2.3), then we may call it a stochastic chain rule.

Theorem 2.25 Let X be an extended Grigelionis process with extended characteristics
(�; P

X

0

; b; c; F;K)

E, and f : R

d

! R

d

0

a function such thatf(X) is a special semi-
martingale and one of the two following conditions is fulfilled.

1. f 2 C2.

2. b = 0, c = 0, F = 0.

Thenf(X) is an extended Grigelionis process inRd
0

with extended characteristics(�;
P

f(X

0

)

;

e

b;ec;

e

F;

e

K)

E, where

e

b

i

t

=

d

X

�=1

D

�

f

i

(X

t�

)b

�

t

+

1

2

d

X

�;�=1

D

��

f

i

(X

t�

)c

��

t

+

Z

�

f

i

(X

t�

+ x)� f

i

(X

t�

)�

d

X

�=1

D

�

f

i

(X

t�

)x

�

F

t

(dx);
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ec

ij

t

=

d

X

�;�=1

D

�

f

i

(X

t�

)c

��

t

D

�

f

j

(X

t�

);

e

F

t

(G) =

Z

1

Gnf0g

(f(X

t�

+ x)� f(X

t�

))F

t

(dx);

e

K

t

(G) =

Z

1

G

(f(X

t�

+ x)� f(X

t�

))K

t

(dx);

for anyt 2 R

+

, i; j 2 f1; : : : ; d0g,G 2 B

d

0

.

Remark. Sufficient conditions forf(X) to be a special semimartingale are each of the
following:

1. For anyt 2 R

+

one has
R

t

0

R

(jxj

2

^ jxj)

e

F

s

(dx) ds < 1 and
R

jxj

e

K

s

(dx) < 1

P -almost surely, whereeF; eK are defined as in the previous theorem.

2. There is someM 2 R

+

such that for anyx 2 R

d one haskDf(x)k �M .

Proofs

PROOF OFTHEOREM 2.25. Regardless of whetherX is a special semimartingale or only
a semimartingale, we have

�

f(X)

([0; t]�G) =

Z

[0;t]�R

d

1

G

(f(X

s�

+ x)� f(X

s�

))�

X

(ds; dx)

and hence for its compensator�f(X)

�

f(X)

([0; t]�G) =

Z

[0;t]�R

d

1

G

(f(X

s�

+ x)� f(X

s�

)) �(ds; dx)

=

Z

t

0

Z

1

G

(f(X

s�

+ x)� f(X

s�

))F

s

(dx) ds

+

X

s2�\[0;t]

Z

1

G

(f(X

s�

+ x)� f(X

s�

))K

s

(dx)

for any t 2 R

+

and anyG 2 B

d

0

with 0 62 G. Thus in the situation of Theorem 2.25,
the third part of the integral characteristics( eB; eC; e�)I of f(X) is as in Lemma 2.16 resp.
Definition 2.17, but witheF , eK instead ofF ,K.

Assume that the second condition holds. ThenX and hencef(X) are�-discrete. There-
fore, we haveeB

t

=

P

s2�\[0;t]

�

e

B

s

and eC
t

= 0 for anyt 2 R

+

, where( eB; eC; e�)I denotes
the integral characteristics off(X). Hence,f(X) is an extended Grigelionis process and
the statement is proved.
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Now letf 2 C2. By Jacod (1979), (3.89) we have that

f

i

(X

t

) = f

i

(X

0

) +

d

X

�=1

Z

t

0

D

�

f

i

(X

s�

) dX

�;c

s

+

Z

[0;t]�R

d

(f

i

(X

s�

+ x)� f

i

(X

s�

)) (�

X

� �)(ds; dx)

+

d

X

�=1

Z

t

0

D

�

f

i

(X

s�

) dB

�

s

+

d

X

�;�=1

1

2

Z

t

0

D

��

f

i

(X

s�

) dhX

�;c

; X

�;c

i

s

+

Z

[0;t]�R

d

�

f

i

(X

s�

+ x)� f

i

(X

s�

)�

d

X

�=1

D

�

f

i

(X

s�

)x

�

�(ds; dx)

for anyi = 1; : : : ; d

0 and anyt 2 R

+

, whereB denotes the predictable part of finite variation
ofX. One immediately sees that the second term is the continuous martingale part, the third
term the discontinuous martingale part and the last three terms the predictable part of finite
variation of the special semimartingalef i(X). Elementary calculations yield that the first
two of the integral characteristics( eB; eC; e�)I are as in Lemma 2.16, but witheb, ec instead of
b, c. �

PROOF OF THE REMARKS. 1. Firstly, observe thatf(X) is a semimartingale, either by JS,
I.4.57 (if f is aC2-function), or by the fact thatX and hencef(X) has only finitely many
jumps in any interval[0; t] (in the caseb = 0, c = 0, F = 0). By the first part of the proof
of Theorem 2.25 and the assumption, we have that

(jxj

2

^ jxj) � �

f(X)

t

�

Z

t

0

Z

(jxj

2

^ jxj)

e

F

s

(dx) ds+

X

s2�\[0;t]

Z

jxj

e

K

s

(dx) <1

P -almost surely for anyt 2 R

+

. By Proposition 2.7,f(X) is a special semimartingale.

2. By the mean value theorem, we havejf(X
s�

+x)� f(X

s�

)j �M jxj. Hence, by the
first part of the proof of Theorem 2.25,

(jxj

2

^ jxj) � �

f(X)

t

=

Z

[0;t]�R

d

�

jf(X

s�

+ x)� f(X

s�

)j

2

^ jf(X

s�

+ x)� f(X

s�

)j

�

�(ds; dx)

� (M

2

_M)(jxj

2

^ jxj) � �

t

P -almost surely for anyt 2 R

+

. SinceX is a special semimartingale, Proposition 2.7 yields
thatf(X) is a special semimartingale as well. �
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2.6 Girsanov's Theorem

Girsanov's theorem tells us how the extended characteristics behave under an absolutely
continuous change of the underlying probability measureP .

Theorem 2.26 Let eP be a probability measure on(
;F; P ) with eP
loc

� P and denote by
Z the density process ofeP relative toP (cf. Definition A.5 in Appendix A). Moreover, let
X be an extended Grigelionis process with extended characteristics(�; P

X

0

; b; c; F;K)

E

that is a eP -special semimartingale. ThenX is an extended Grigelionis process relative
to eP and its extendedeP -characteristics(�; ePX

0

;

e

b; c;

e

F;

e

K)

E are given as follows. There
exist a(P
 Bd

)-measurable mappingY : 
 � R

+

� R

d

! R

+

and a predictable process
� : 
� R

+

! R

d such that for anyt 2 R

+

, i 2 f1; : : : ; dg we haveeP -almost surely
Z

t

0

Z

jx(Y (s; x)� 1)jF

s

(dx) ds+

X

s2�\[0;t]

Z

jx(Y (s; x)� 1)jK

s

(dx) <1; (2.7)

Z

t

0

�

�

�

d

X

�=1

c

i�

s

�

�

s

�

�

�

ds <1;

Z

t

0

�

d

X

�;=1

�

�

s

c

�

s

�



s

�

ds <1;

and such that for anyt 2 R

+

, i 2 f1; : : : ; dg,G 2 B

d we have

e

P

X

0

(G) = E(1

G

(X

0

)Z

0

);

e

b

i

t

= b

i

t

+

d

X

�=1

c

i�

s

�

�

s

+

Z

x

i

(Y (t; x)� 1)F

t

(dx); (2.8)

e

F

t

(G) =

Z

1

G

(x)Y (t; x)F

t

(dx); (2.9)

e

K

t

(G n f0g) =

Z

1

Gnf0g

(x)Y (t; x)K

t

(dx): (2.10)

Moreover, a(P 
 Bd

)-measurable mappingY : 
 � R

+

� R

d

! R

+

and a predictable
process� : 
� R

+

! R

d meet all the above conditions if and only if

1. E(
R

[0;1)�R

d

Z

t

U(t; x)�

X

(dt; dx)) = E(

R

[0;1)�R

d

Y (t; x)Z

t�

U(t; x)�

X

(dt; dx)) for

any(P 
 Bd

)-measurable mappingU : 
 � R

+

� R

d

! R

+

(where�X denotes as
before the random measure of jumps ofX),

2. hZc

; X

i;c

i =

R

�

0

(

P

d

�=1

c

i�

t

�

�

t

Z

t�

) dt for anyi 2 f1; : : : ; dg.

Remark. ForX to be aeP -special semimartingale, any of the following conditions suffices.

1. [Z;M i

] 2 A

loc

(P ) for any i 2 f1; : : : ; dg, whereM is theP -local martingale part
of theP -canonical decomposition of theP -special semimartingaleX.
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2. [Z;Md;i

] 2 A

loc

(P ) for any i 2 f1; : : : ; dg, whereMd is the purely discontinuous
part of theP -local martingaleM in Condition 1, i.e.Md

= x � (�

X

� �).

3. For some(P
Bd

)-measurable mappingY : 
�R

+

�R

d

! R

+

meeting Condition
1 in the previous theorem, we have that for anyt 2 R

+

Z

t

0

Z

(jxj

2

^ jxj)Y (s; x)F

s

(dx) ds <1 P -almost surely,

Z

jxjY (t; x)K

t

(dx) <1 P -almost surely.

The following lemma shows how to obtain� andY if the density process is of exponential
form, which is often the case.

Lemma 2.27 Assume that in Theorem 2.26,Z is of the formZ = E (

R

�

0

�

s

� dX

c

s

+ (Y �

1) � (b�� b�)), where the integer-valued random measureb� onR
+

� R

d is defined by

b�([0; t]�G) := �

X

([0; t]�G) + "

0

(G)

X

s2�\[0;t]

(1� �

X

(fsg � R

d

))

(for any t 2 R

+

, G 2 B

d), b� denotes the compensator ofb�, � : 
 � R

+

! R

d is
a predictable process andY : 
 � R

+

� R

d

! R

+

a predictable mapping such that
R

Y (t; x)K

t

(dx) = 1 P -almost surely for anyt 2 �. Then� andY meet the Conditions 1
and 2 in Theorem 2.26 (even if we do not assume thatX is also aeP -special semimartingale).

Proofs

PROOF OFTHEOREM 2.26. Observe that, by the definition of the extended characteristics
and by Remark 2 in Section 2.4, Equations (2.8) – (2.10) and the claim concerningc can be
rephrased as

e�([0; t]�G) =

Z

t

0

Z

1

G

(s)Y (s; x)F

s

(dx) +

X

s2�\[0;t]

Z

1

Gnf0g

(s)Y (s; x)K

s

(dx); (2.11)

e

B

i

t

= B

i

t

+

d

X

�=1

Z

t

0

c

i�

s

�

�

s

ds+

Z

t

0

Z

x

i

(Y (s; x)� 1)F

s

(dx)

+

X

s2�\[0;t]

Z

x

i

(Y (s; x)� 1)K

s

(dx);

e

C

t

= C

t

for anyt 2 R

+

, i 2 f1; : : : ; dg,G 2 B

d, where(B;C; �)I and( eB; eC; e�)I denote the integral
characteristics ofX relative toP and eP , respectively. Using Equation (2.3), we rephrase
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this once more by the statement that(

e

B(h);

e

C; e�)

JS are the characteristics ofX relative to
e

P , where

e

B

i

t

(h) = B

i

t

(h) +

d

X

�=1

Z

t

0

c

i�

s

�

�

s

ds+ h

i

(x)(Y � 1) � �

t

for any t 2 R

+

. Observe that Condition 1 is a rephrase ofY Z

�

= M

P

�

X

(Zj

e

P ) in the no-
tation of JS. Theorem 2.26 now follows from JS, Theorem III.3.24 if we replace (2.7) with
jh(x)(Y � 1)j � �

t

<1

e

P -almost surely for anyt 2 R

+

. But note thatjx� h(x)j � �
t

<1

andj(x�h(x))Y j��
t

= jx�h(x)j�e�

t

<1

e

P -almost surely for anyt 2 R

+

holds anyway,
sinceX is aP - and eP -special semimartingale (cf. Proposition 2.7). Hence, the stronger
inequalityjx(Y � 1)j � �

t

<1

e

P - almost surely for anyt 2 R

+

is also met. �

PROOF OF THE REMARK. 1. It suffices to show thatM is a eP -special semimartingale. By
Jacod (1979), (7.29) or JS, III.3.11, this follows from[Z;M i

] 2 A

loc

(P ) for i 2 f1; : : : ; dg.
2. It suffices to show thatMd is a eP -special semimartingale. This follows again from

Jacod (1979), (7.29) or JS, III.3.11.
3. By JS, III.3.24, we have that (2.11) holds for theeP -compensator of�X even ifX is

not special. The claim now follows from Proposition 2.7. �

PROOF OFLEMMA 2.27. SinceZ is by definition a solution to the SDEdZ
t

= Z

t�

�

t

�

dX

c

t

+ Z

t�

(Y (t; x) � 1) (b� � b�)(dt; dx), one easily verifies that Condition 2 holds for�.
Moreover observe that, by definition of the integral with respect to(b�� b�), the jumps ofZ
are, up to an evanescent set, given by

�Z

t

=

8

<

:

Z

t�

(Y (t;�X

t

)� 1)1

R

d

nf0g

(�X

t

)� 0 if t =2 �

Z

t�

(Y (t;�X

t

)� 1)�

R

Z

t�

(Y (t; x)� 1) b�(ftg � dx) if t 2 �:

Sinceb�(ftg�dx) = K

t

(dx) for anyt 2 �, we have that
R

(Y (t; x)�1) b�(ftg�dx) = 0 and
hence�Z

t

= Z

t�

(Y (t;�X

t

)� 1) for anyt 2 R

+

. This in turn impliesZ
t

= Z

t�

+�Z

t

=

Z

t�

Y (t;�X

t

) = Z

t�

Y (t; x) for �X-almost all(t; x) 2 R

+

� R

d . Thus, Condition 1 in
Theorem 2.26 also holds. �

2.7 Martingale Problems

Now we are ready to define the promised stochastic analogue to ODE's. For the reasons
mentioned in the previous section we will not do this in terms of Grigelionis processes and
their derivative, but consider instead the respective extended notions. In this section the
stochastic basis(
;F; (F

t

)

t2R

+

; P ) is no longer given. Let us fix some

Notation. By (D

d

;D

d

; (D

d

t

)

t2R

+

) we denote theSkorohod spaceD d

:= D (R

d

) of càdlàg
functionsR

+

! R

d with its Borel-�-field Dd

:= D(R

d

) and the canonical filtration



2.7. Martingale Problems 57

(D

d

t

)

t2R

+

:= (D(R

d

)

t

)

t2R

+

(cf. Appendix A, Definition A.7).Pd stands for the predictable
�-field onD d

� R

+

.

Definition 2.28 1. A martingale problem(�; �; b; c; F;K)

M in Rd is given by

� a discrete set� � R

�

+

,

� a probability measure� on (Rd ;Bd

),

� aPd-measurable mappingb : D d

� R

+

! R

d such that
R

t

0

jb

s

(�!)j ds < 1 for
any(�!; t) 2 D

d

� R

+

,

� aPd-measurable mappingc : D d

� R

+

! R

d�d whose values are symmetric,
non-negative matrices such that

P

d

i;j=1

R

t

0

jc

ij

s

(�!)j ds <1 for any(�!; t) 2 D

d

�

R

+

,

� a transition kernelF from (D

d

� R

+

;P

d

) into (R

d

;B

d

) such thatF ((�!; t); f0g)
= 0 and

R

t

0

R

(jx

2

j ^ jxj)F ((�!; s); dx) ds <1 for any(�!; t) 2 D

d

� R

+

,

� a transition kernelK from (D

d

�R

+

;P

d

) into (Rd ;Bd

) such that for any(�!; t) 2
D

d

� R

+

, we have
R

jxjK((�!; t); dx) <1 and

K((�!; t);R

d

) =

�

1 if t 2 �

0 else.

2. We call aRd -valued extended Grigelionis processX on a filtered probability space
(
;F; (F

t

)

t2R

+

; P ) (or, more exactly, we call the tupel((
;F; (F
t

)

t2R

+

; P ); X)) so-
lution-processto the martingale problem(�; �; b; c; F;K)

M if (�; �;eb;ec; eF; eK)

E is a
version of its extended characteristics, where we definee

b

t

(!) := b

t

(X(!)), ec
t

(!) :=

c

t

(X(!)), eF ((!; t); �) := F ((X(!); t); �) and eK((!; t); �) := K((X(!); t); �) for any
(!; t) 2 
� R

+

.

3. For any solution-processX the lawPX on (D

d

;D

d

) is called asolution-measureto
the martingale problem.

Remark. Strictly speaking, a semimartingaleX on (
;F; (F

t

)

t2R

+

; P ) is càdlàg only up
to an evanescent set, so thatb

t

(X(!)) etc. may only be defined forP -almost all! 2 
.
However, by Jacod (1979), (1.1) we can defineb(X) (up to indistinguishability uniquely)
by taking a(F

t

)

t2R

+

-predictable version ofb( eX), where eX is a (FP
t

)

t2R

+

-semimartingale
with càdlàg paths (forall ! 2 
) andX =

e

X up to indistinguishability.

If two processes solve the same or similar martingale problems, we say that they share the
same (resp. a similar)dynamic. This term will also be loosely applied if we talk about the
extended characteristics of an extended Grigelionis process. Before we prove a number of
results about martingale problems for later use, we give some examples showing that vari-
ous probabilistic models can be obtained as particular martingale problems.
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Examples.

1. Let � be a starting distribution on(Rd ;Bd

) andQ a Markov transition kernel from
(R

d

;B

d

) into (R

d

;B

d

) such that
R

jxjQ(y; dx) < 1 for anyy 2 R

d . Moreover, let
((
;F; (F

t

)

t2R

+

; P ); X) be a solution-process to the martingale problem(N

�

; �; 0; 0;

0; K)

M , where the transition kernalK from (D

d

� R

+

;P

d

) into (R

d

;B

d

) is defined
by

K((�!; t); G) =

�

Q(�!

t�1

; G+ �!

t�1

) if t 2 N

�

0 else

for any(�!; t) 2 D

d

� R

+

, G 2 B

d. Then(X
t

)

t2N

is aMarkov chaincorresponding
to the initial distribution� and the transition kernelK.

2. Consider now an ordinary differential equation or, more specifically, the initial value
problem

x(0) = x

0

; x

0

(t) = f(x(t); t) (2.12)

for somex
0

2 R

d and some continuous functionf : R

d

� R

+

! R

d . Then any solu-
tion to this initial value problem is a deterministic solution-process to the martingale
problem(?; "

x

0

; b; 0; 0; 0)

M , whereb : D d

�R

+

! R

d is defined byb
t

(�!) := f(�!

t

; t)

for any(�!; t) 2 D

d

�R

+

. Moreover, if((
;F; (F
t

)

t2R

+

; P ); X) is a solution-process
to this martingale problem, thenP -almost all paths ofX are solutions to the initial
value problem (2.12). Hence, there are only deterministic solution-processes to the
martingale problem if uniqueness holds for the initial value problem (2.12).

3. Let ((
;F; (F
t

)

t2R

+

; P ); (Z;X)) be a solution-process to a martingale problem(N

�

;

�; 0; 0; 0; K)

M in R

2 such that for any((�!1

; �!

2

); t) 2 R

2

� (N

�

n f1; 2; : : : ; (p _

q) � 1g) we have thatK(((�!

1

; �!

2

); t); �) is the image ofN(0; 1) under the mapping
R ! R

2 , z 7! (z� �!

1

t�1

; z� �!

2

t�1

+

P

p

i=1

'

i

�!

2

t�i

+

P

q

i=1

#

i

�!

1

t�i

), wherep; q 2 N and
'

1

; : : : ; '

p

; #

1

; : : : ; #

q

2 R are given. Then(Z
t

)

t2N

� is a sequence of independent,
N(0; 1)-distributed random variables. Moreover, we have that

X

t

� '

1

X

t�1

� : : :� '

p

X

t�p

= Z

t

+ #

1

Z

t�1

+ : : :+ #

q

Z

t�q

P -almost surely for anyt 2 N n f0; 1; : : : ; p _ qg. Therefore,(X
t

)

t2Nnf0;1;:::;p_qg

is a
ARMA(p; q) time series.

4. Consider a one-dimensionaldiffusionsatisfying the SDE

dX

t

= �(X

t

; t) dt+ �(X

t

; t) dW

t

; X

0

= x

0

wherex
0

2 R, �; � : R � R

+

! R are given continuous functions andW is a
standard Wiener process. ThenX is a solution-process to the martingale problem
(?; "

x

0

; b; c; 0; 0)

M , whereb(�!; t) = �(�!

t

; t), c(�!; t) = (�(�!

t

; t))

2 for any (�!; t) 2
R � R

+

.

The following lemma relates our martingale problems with those from JS, Definition III.2.4
and Jacod (1979), Problème 12.9. These two use a slightly different notation for the same
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object:SII(H;XjP

H

;B;C; �) in Jacod (1979) corresponds tos (H; XjP

H

;B;C; �) in JS.

Remark. If � denotes a probability measure onRd andY is the canonical process on
D

d , thenY �1

0

(A) 7! �(A) for anyA 2 B

d uniquely defines a probability measure on
(D

d

; �(Y

0

)), which we denote again by� (l' image réciproquein Jacod (1979), p.395).

Lemma 2.29 Let (�; �; b; c; F;K)

M be a martingale problem inRd as in Definition 2.28.

1. Let(
;F; (F
t

)

t2R

+

; P ) be a filtered probability space andX aRd -valued semimartin-
gale on that space. Then we have equivalence between

(a) X is a solution-process to the martingale problem(�; �; b; c; F;K)

M .

(b) P is a solution to the martingale problems (�(X
0

); Xj(P j

�(X

0

)

);B(h); C; �) on
(
;F; (F

t

)

t2R

+

) in the sense of JS, Definition III.2.4, where the mappingsB(h) :


 � R

+

! R

d , C : 
 � R

+

! R

d�d and the random measure� onR
+

� R

d

are defined by

B(h)

t

:=

Z

t

0

b

s

(X) ds+

Z

t

0

Z

(h(x)� x)F ((X; s); dx) ds

+

X

s2�\[0;t]

Z

h(x)K((X; s); dx);

C

t

:=

Z

t

0

c

s

(X) ds;

�([0; t]�G) :=

Z

t

0

F ((X; s); G) ds+

X

s2�\[0;t]

K((X; s); G n f0g)

for anyt 2 R

+

,G 2 B

d. Moreover,PX

0

= �.

2. If ((
;F; (F
t

)

t2R

+

; P ); X) is a solution-process to the martingale problem, then((D

d

;

D

d

; (D

d

t

)

t2R

+

; P

X

); Y ) is a solution-process as well, whereY here denotes thecanon-
ical processonD d (i.e.Y

t

(�!) = �!

t

for any(�!; t) 2 D

d

� R

+

).

3. On the space(D d

;D

d

; (D

d

t

)

t2R

+

) with canonical processY , consider the (JS-sense)
martingale problems (�(Y

0

); Y j�;B(h); C; �), whereB(h); C; � are defined as in
Statement 2, but onD d instead of
. Then we have equivalence between

(a) P is a solution-measure to(�; �; b; c; F;K)

M .

(b) P 2 s (�(Y

0

); Y j�;B(h); C; �).

In particular, (�; �; b; c; F;K)

M has a unique solution-measure if and only ifs (�(Y

0

);

Y j�;B(h); C; �) has a unique solution.

Now we turn to the connection of martingale problems and stochastic differential equations
(SDE's).
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Theorem 2.30 Let x 2 R

d , let b : D

d

� R

+

! R

d

0

and u : D

d

� R

+

! R

d�d

0

be
predictable. Then the following statements are equivalent.

1. P is a weak solution (or solution-measure) to the SDE

dX

t

= b

t

(X) dt+ u

t

(X) dW

t

; X

0

= x

(in the sense of Jacod (1979), Definition 14.79), whereW denotes aRd
0

-valued stan-
dard Wiener process.

2. P is a solution-measure to the martingale problem(?; "
x

; b; c; 0; 0)

M , wherec :=

uu

>.

The preceding theorem deserves a short reflection. In applications stochastic phenomena
are often modelled by SDE's with respect to Wiener processes. This commonchoice is,
by Theorem 2.30, also natural from the point of view of martingale problems as long as
one considers only models with continuous paths (i.e.F = 0, K = 0). The situation
is less obvious in the discontinuous case. Although formally martingale problems (with
� = ?) can be transformed into a weak sense SDE with respect to a Wiener process and
a Poisson random measure (cf. Jacod (1979), Théorèmes 14.80, 14.45, 14.53), the choice
and the meaning of the coefficients is not evident. Therefore we think that, especially in the
discontinuous case, martingale problems may be the more intuitive concept from the point
of view of modelling.

The following theorem states that the existence of a unique solution-measure to a mar-
tingale problem carries over to related problems with different drift coefficients in the con-
tinuous case. Its proof is based on a Girsanov transformation.

Theorem 2.31 Let (?; �; b; c; 0; 0)M be a martingale problem inRd having a unique solu-
tion-measureP . Moreover, leth : D

d

� R

+

! R

d be aPd-measurable mapping such that
R

t

0

jh

s

(�!)

>

c

s

(�!)h

s

(�!)j ds < 1 for any (�!; t) 2 D

d

� R

+

. Then the martingale problem
(?; �; b +

P

d

�=1

h

�

c

��

; c; 0; 0)

M has a unique solution-measureP 0, which is, in addition,
locally equivalent toP (cf. Appendix A, Definition A.5). The density process ofP

0 relative
to P isZ := E (

R

�

0

h

s

� dX

c

s

), whereX denotes the canonical process onD d .

The next two technical lemmas are for later use.

Lemma 2.32 Let ((
;F; (F
t

)

t2R

+

; P ); X) be a solution-process to a martingale problem
(�; �; b; c; F;K)

M in R

d . Then((
;G; (G
t

)

t2R

+

; P ); X) is also a solution-process to the
problem, where(G

t

)

t2R

+

denotes any sub-filtration of(F
t

)

t2R

+

to whichX is adapted or the
P -completion of such a filtration andG = F resp.FP .

Lemma 2.33 Let ((
;F; (F
t

)

t2R

+

; P ); X) be a solution-process to a martingale problem
(�; �; b; c; F;K)

M in R

d . Assume that(
;F) is a Blackwell space (cf. Remark 2 below).
Fix t 2 R

+

and let e� := fs � t : s 2 � \ (t;1)g. For fixed! 2 
 we definex 2 R

+

,
the mappingseb : D d

� R

+

! R

d , ec : D d

� R

+

! R

d�d and the transition kernelsF;K
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from (D

d

� R

+

;P

d

) into (R

d

;B

d

) by x := X

t

(!), eb
s

(�!) := b

t+s

(�(X(!); �!)), ec
s

(�!) :=

c

t+s

(�(X(!); �!)), eF ((�!; s); �) := F ((�(X(!); �!); t+ s); �), eK((�!; s); �) := K((�(X(!); �!);

t + s); �) for any(�!; s) 2 D

d

� R

+

, where

�(X(!); �!)

s

:=

�

X

s

(!) for s 2 [0; t)

�!

s�t

for s 2 [t;1):

Then bothP (X

t+s

)

s2R

+

jF

t

(!) and P (X

t+s

)

s2R

+

j�(X

u

:u2[0;t])

(!) are for P -almost all! 2 


solution-measures to the (random) martingale problem(

e

�; "

x

;

e

b;ec;

e

F ;

e

K)

M .

Remarks.

1. Lemma 2.33 still holds if we replace(
;F; (F
t

)

t2R

+

; P ) with its P -completion(
;
F

P

; (F

P

t

)

t2R

+

; P ).

2. Blackwell spaces are defined in Dellacherie & Meyer (1978), III.24. Any Polish space
with its Borel-�-field as e.g.(D d

;D

d

) is a Blackwell space (cf. JS, p. 65). Moreover,
if (F

t

)

t2R

+

is the canonical filtration of a càdlàg processX andF = F

1�

, then(
;F)
is also a Blackwell space.

Proofs

PROOF OF THE EXAMPLES. 1. Sinceb = 0, c = 0, F = 0, we have thatX
t

= X

0

+

P

s2�\[0;t]

�X

s

for anyt 2 R

+

. By Remark 3 in Section 2.4 we obtainP (X
t

2 GjF

t�

) =

P

�X

t

jF

t�

(G�X

t�1

) = K((X; t); G�X

t�1

) = Q(X

t�1

; G) P -almost surely for anyt 2 N

� ,
G 2 B

d. Therefore, alsoP (X
t

2 �j�(X

0

; : : : ; X

t�1

)) = Q(X

t�1

; �) P -almost surely for any
t 2 N

� , and the claim follows.
3. Similarly to Example 1, it follows that

P (Z

t

2 G;X

t

2 HjF

t�

) = K(((Z;X); t); (G� Z

t�1

)� (H �X

t�1

))

=

Z

1

G

(z)1

H

�

z +

p

X

i=1

'

i

X

t�i

+

q

X

i=1

#

i

Z

t�i

�

N(0; 1)(dz)

P -almost surely fort 2 N

�

n f1; 2; : : : ; (p _ q)g andG;H 2 B. This shows the claim.
4. This will be shown in Theorem 2.30. �

Proposition 2.34 Let (
;F; (F
t

)

t2R

+

; P ) be a filtered probability space,X a R

d -valued
semimartingale on that space and� a probability measure on�(X

0

). By (G
t

)

t2R

+

we de-
note a sub-filtration of(F

t

)

t2R

+

, to whichX is adapted or theP -completion of such a
filtration; moreover,G := F resp.FP . Assume thatP is a solution to the martingale prob-
lem s (�(X

0

); Xj�;B(h); C; �), whereB(h); C; � are as in JS, III.2.3, but with predictabil-
ity also relative to the filtration(G

t

)

t2R

+

. ThenP is a solution to the martingale problem
s (�(X

0

); Xj�;B(h); C; �) on (
;G; (G
t

)

t2R

+

; P ).
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PROOF. By JS, II.2.42, we have that

Y := f(X)� f(X

0

)�

d

X

i=1

Z

�

0

D

i

f(X

s�

) dB(h)

i

s

�

1

2

d

X

i;j=1

Z

�

0

D

ij

f(X

s�

) dC

ij

s

�

�

f(X

�

+ x)� f(X

�

)�

d

X

i=1

D

i

f(X

�

)h

i

(x)

�

� �

is a(F
t

)

t2R

+

-local martingale for any boundedC2-functionf : R

d

! R. Since the last three
terms are(G

t

)

t2R

+

-predictable and, moreover, of finite variation, they are, by JS, I.3.10,
(G

t

)

t2R

+

-locally bounded. Hence,Y is a (G
t

)

t2R

+

-locally bounded(F
t

)

t2R

+

-local martin-
gale. By Jacod (1979), (9.18), (iii))(i), one has thatY is also a(G

t

)

t2R

+

-local martingale.
Again by JS, II.2.42, the statement follows. �

PROOF OFLEMMA 2.29. 1. (a))(b): By Lemma 2.21 the characteristics(B(h); C; �)JS

are given by the equations in (b), which yields the claim.
(b))(a): By the integrability conditions onF;K in Definition 2.28, we have that(jxj2^

jxj) � �

t

< 1 P -almost surely for anyt 2 R

+

. Therefore,X is a special semimartingale
(cf. Proposition 2.7). The claim now follows from Statement 2 in Lemma 2.21.

2. By Statement 1,P is a solution to the martingale problems (�(X
0

); Xj(P j

�(X

0

)

);

B(h); C; �) on ((
;F; (F

t

)

t2R

+

); X). By Proposition 2.34 one may replace(F
t

)

t2R

+

with
the canonical filtration(G

t

)

t2R

+

of X. The corresponding martingale problem on the space
(D

d

;D

d

; (D

d

t

)

t2R

+

) (which is calleds (�(Y

0

); Y j�;B(h); C; �) in Statement 3 of Lemma
2.29) is the image of that problem in the sense of Jacod (1979), (12.65). By Jacod (1979),
(12.66), we have thatPX

2 s (�(Y

0

); Y j�;B(h); C; �). The claim now follows from the
inclusion (b))(a) in Statement 1.

3. By Statement 2, we have that (a) is equivalent to

(c) ((D

d

;D

d

; (D

d

t

)

t2R

+

; P ); Y ) is a solution-process to(�; �; b; c; F;K)

M .

Statement 1 implies that (c) is equivalent to (b). �

PROOF OF THEOREM 2.30. By Jacod (1979), (14.80), the first statement is equivalent
to the assertion thatP is a solution to the martingale problems (�(X

0

); Xj"

x

;B;C; 0)

on the space(D d

;D

d

; (D

d

t

)

t2R

+

) with canonical processX, whereB
t

:=

R

t

0

b

s

(X) ds,
C

t

=

R

t

0

u

s

(X)u

s

(X)

>

ds for any t 2 R

+

. The claim now follows from Statement 3 of
the previous lemma. �

PROOF OFTHEOREM 2.31. Related versions of this theorem can be found in Revuz & Yor
(1994), Theorems IX.1.10 and IX.1.11.

Firstly, we will show the existence part. For anyr 2 R

+

define a stopping timeT
r

on
(D

d

;D

d

; (D

d

t

)

t2R

+

; P ) by T
r

:= infft 2 R

+

: exp(

1

2

R

t

0

jh

>

s

c

s

h

s

j ds) > rg. By assumption,
we haveT

r

" 1 for r " 1 and henceDd

= D

d

1�

= �([

r2N

D

d

T

r

) (cf. Jacod (1979), (1.9a)).
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We define a new filtration(G
r

)

r2R

+

on (D

d

;D

d

) by G
r

:= D

d

T

r

. Observe that(G
r

)

r2R

+

is right-continuous, sinceT
er

# T

r

for er # r (cf. JS, I.1.18). By Lemma 2.29, Statement
2 we have thatX is a solution-process to the martingale problem(?; �; b; c; 0; 0)M . Ac-
cording to the Novikov condition (cf. Revuz & Yor (1994), Proposition VIII.1.15),Z

T

r is
a uniformly integrable martingale starting in 1. Therefore, we may define for any r 2 R

+

a probability measureP r

� P onDd by dP r

=dP := Z

T

r

1

. By use of the stopping theo-
rem (cf. JS, I.1.39b) one easily shows thatP

r

0

j

G

r

= P

r

j

G

r

for r � r

0. Since(D d

;D

d

) is
a Polish space, there exists, by Ikeda & Watanabe (1989), IV.4.1, a probability measureP 0

on (D

d

;D

d

) such thatP 0

j

G

r

= P

r

j

G

r

for anyr 2 R

+

. SinceZT

r

= E (

R

�

0

1

[0;T

r

]

h

s

� dX

c

s

),
it follows from Lemma 2.27 and Theorem 2.26 that((D

d

;D

d

; (D

d

t

)

t2R

+

; P

r

); X) is for any
r 2 R

+

a solution-process to the martingale problem(?; �; b(r); c; 0; 0)M , whereb(r) := b+

P

d

�=1

h

�

c

��

1

[0;T

r

]

. By Statement 3 of Lemma 2.29,P r is a solution to the martingale prob-

lem s (�(X

0

); Xj�;B

(r)

; C; 0) on ((D

d

;D

d

; (D

d

t

)

t2R

+

); X), whereB(r)

t

:=

R

t

0

b

(r)

s

(X) ds,
C

t

:=

R

t

0

c

s

(X) ds for anyt 2 R

+

. By JS, II.2.21 the processesM (r)

:= X�X

0

�B

(r) and
N

(r);ij

:= M

(r);i

M

(r);j

� C

ij areP r-local martingales fori; j 2 f1; : : : ; dg. The stopping
theorem implies that this also holds for the stopped processes(M

(r)

)

T

r

; (N

(r);ij

)

T

r . Now
define the processesB, M , N ij by B

t

:=

R

t

0

(b

s

+

P

d

�=1

h

�

s

c

��

s

) ds, M
t

:= X

t

� X

0

� B

t

,
N

ij

:= M

i

M

j

� C

ij for any t 2 R

+

. Since(M (r)

)

T

r

= M

T

r , (N (r);ij

)

T

r

= (N

ij

)

T

r

and sinceP r

; P

0 coincide onDd

T

r

, we have thatMT

r

; (N

ij

)

T

r areP 0-local martingales for
any r 2 N . HenceM;N

ij are alsoP 0-local martingales fori; j 2 f1; : : : ; dg. By JS,
II.2.21 we have thatP 0 is a solution to the martingale problems (�(X

0

); Xj�;B;C; 0) on
((D

d

;D

d

; (D

d

t

)

t2R

+

); X). Statement 3 of Lemma 2.29 yields thatP

0 is a solution-measure
to the martingale problem(?; �; b+

P

d

�=1

h

�

c

��

; c; 0; 0)

M as well. By JS, III.3.3,P andP 0

are locally equivalent. The fact thatZ is the density process ofP 0 relative toP follows from
an easy calculation using the martingale property of the processesZ

T

r , r 2 N .
In order to show uniqueness, assume that there are two solution-measuresP

0

; P

00 as in
Theorem 2.31. By applying the existence part of the theorem to�h instead ofh, we have

that there are probability measureseP 0

loc

� P

0, eP 00

loc

� P

00, defined byd eP 00

j

D

d

t

=dP

00

j

D

d

t

:=

d

e

P

0

j

D

d

t

=dP

0

j

D

d

t

:= E (�

R

�

0

h

s

� dX

c

s

)

t

for anyt 2 R

+

, which are solution-measures to the

original martingale problem(?; �; b; c; 0; 0)M , whereX
c

:= X �

R

�

0

(b

s

(X)+

P

d

�=1

h

�

s

(X)

c

��

s

(X)) ds denotes the continuous local martingale part ofX relative toP 0 as well asP 00.
Since the martingale problem(?; �; b; c; 0; 0)M has a unique solution-measure, we have
e

P

0

=

e

P

00 and, by the positivity ofE (�

R

�

0

h

s

� dX

c

s

), alsoP 0

= P

00, which yields the claim.
�

PROOF OF LEMMA 2.32. By Lemma 2.29,P is a solution to the martingale problem
s (�(X

0

); Xj(P j

�(X

0

)

);B(h); C; �) on (
;F; (F

t

)

t2R

+

) whereB(h); C; � are defined as in
Statement 1 of this lemma. Proposition 2.34 implies that we may substitute(
;G; (G

t

)

t2R

+

)

for the space(
;F; (F
t

)

t2R

+

). Again by Lemma 2.29 the statement follows. �

Proposition 2.35 If (X
t

)

t2R

+

is a càdlàg, adapted process such that(X

t

)

t2Q

+

is a martin-
gale, then(X

t

)

t2R

+

is a martingale as well.
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PROOF. Fix T 2 Q

+

. It suffices to show that(X
t

)

t2[0;T ]

is a martingale. By JS, I.1.42
there exists a martingale( eX

t

)

t2R

+

with eX
t

= E(X

T

jF

t

) P -almost surely for anyt 2 R

+

.
SinceX and eX are càdlàg and coincide onQ \ [0; T ], we have thatXT

=

e

X

T up to
indistinguishability, which implies that(X

t

)

t2[0;T ]

is a martingale. �

Proposition 2.36 Let (
;F; (F
t

)

t2R

+

; P ) be a filtered probability space such that(
;F) is
a Blackwell space. Fixt 2 R

+

and define the filtration(G
s

)

s2R

+

on(
;F) byG
s

:= F

s+t

for
anys 2 R

+

. LetX be a local martingale on(
;F; (F
t

)

t2R

+

; P ). Then the processeX, de-
fined byeX

s

:= X

s+t

�X

t

for anys 2 R

+

, is a local martingale on(
;F; (G
s

)

s2R

+

; P

jF

t

(!))

for P -almost all! 2 
, whereP jF

t denotes the regular conditional distribution of the iden-
tity given the�-fieldF

t

.

PROOF. Let (T
n

)

n2N

be a localizing sequence forX. One easily shows that the sequence
(

e

T

n

)

n2N

, defined byeT
n

:= (T

n

� t)_ 0, is a sequence of stopping times on(
;F; (G

s

)

s2R

+

)

with eT
n

" 1 P

jF

t

(!)-almost surely forP -almost all! 2 
. We will now show thateX e

T

n

is a (
;F; (G

s

)

s2R

+

; P

jF

t

(!))-martingale for anyn 2 N andP -almost all! 2 
. Fix
n 2 N . Since eX e

T

n is (G

s

)

s2R

+

-adapted and càdlàg, it suffices to prove that(

e

X

e

T

n

s

)

s2Q

+ is
a P jF

t

(!)-martingale forP -almost all! 2 
 (cf. Proposition 2.35). We will only prove
the martingale equality; the integrability follows along the same lines. Fixr; s 2 Q

+ with
r � s. It remains to be shown that there is aP -null setN 2 F such that, for anyG 2 F and
any! 2 N

C , we have
R

(

e

X

e

T

n

s

(�!) �

e

X

e

T

n

r

(�!))E(1

G

jG

r

)(�!)P

jF

t

(!; d�!) = 0: By a Dynkin
argument it suffices to consider a countable generating algebra (which always exists in a
Blackwell space) instead of allG 2 F. Therefore, we may let theP -null setN depend on
the chosen setG 2 F. So, we are left to prove that for anyG 2 F and anyF 2 F

t

, we have
ZZ

�

e

X

e

T

n

s

(�!)�

e

X

e

T

n

r

(�!)

�

E(1

G

jG

r

)(�!)P

jF

t

(!; d�!)1

F

(!)P (d!) = 0:

But, by definition of conditional probabilities and byeX e

T

n

s

(�!) = X

T

n

_t

s+t

(�!) � X

t

(�!), the
left-hand side equals

R

(X

T

n

t+s

(!) � X

T

n

t+r

(!))E(1

G

jG

r

)(!)1

F

(!)P (d!); which is 0, since
F

t

� G

r

= F

t+r

and sinceXT

n is aP -martingale. �

PROOF OF LEMMA 2.33. By Lemma 2.29,P is a solution to the martingale problem
s (�(X

0

); Xj(P j

�(X

0

)

);B(h); C; �) on (
;F; (F

t

)

t2R

+

), whereB(h), C, � are defined in
Statement 1 of that lemma. By JS, II.2.21 this implies that the processesM(h) := X(h)

�B(h) � X

0

, M(h)

i

M(h)

j

�

e

C

ij

(h) for any i; j 2 f1; : : : ; dg, andg � �X � g � � for
anyg 2 C +

(R

d

) are local martingales, where we refer to JS for notation to avoid lengthy
definitions here. But note thatC +

(R

d

) can be chosen countable (cf. JS, II.2.20). Let now
t 2 R

+

be fixed as in Lemma 2.33. Define a new filtration(G

s

)

s2R

+

on(
;F) byG
s

:= F

s+t

for any s 2 R

+

. Moreover, define(G
s

)

s2R

+

-local martingalesfM(h) etc. byfM(h)

s

:=

M(h)

t+s

�M(h)

t

for anys 2 R

+

(and accordingly for the processesM(h)

i

M(h)

j

�

e

C

ij

(h)

andg ��X�g ��). Proposition 2.36 yields thatfM(h) etc. areP jF

t

(!)-local martingales for
P -almost all! 2 
. Again by JS, II.2.21, this implies that forP -almost all! 2 
 we have
P

jF

t

(!) 2 s (�(Y

0

); Y j(P

jF

t

(!)j

�(Y

0

)

);

e

B(h);

e

C; e�) on (
;F; (G

s

)

s2R

+

) with fundamental
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process(Y
s

)

s2R

+

:= (X

t+s

)

s2R

+

, where eB(h)
s

:= B(h)

t+s

� B(h)

t

, eC
s

:= C

t+s

� C

t

,
e�([0; s]� G) := �([t; t + s] � G) for s 2 R

+

, G 2 B

d. Fix ! 2 
. Observe that we have
b

t+s

(X(!)) = b

t+s

(�(X(!); (X

t+s

)

s2R

+

(!)) =

e

b

s

(Y (!)) (and likewise forc; F;K) for any
s 2 R

+

. Therefore, we have by definition ofB(h); C; � that

e

B(h)

s

=

Z

s

0

e

b

u

(Y ) du+

Z

s

0

Z

(h(x)� x)

e

F ((Y; u); dx)du+

X

u2

e

�\[0;s]

Z

h(x)

e

K((Y; u); dx);

e

C

s

=

Z

s

0

ec

u

(Y ) du;

e�([0; s]�G) =

Z

s

0

e

F ((Y; u); G) du+

X

u2

e

�\[0;s]

e

K((Y; u); G n f0g):

By Lemma 2.29, Statement 1 we can therefore conclude that((
;F; (G

s

)

s2R

+

; P

jF

t

(!));

Y ) is a solution-process to the martingale problem(

e

�; "

X

t

(!)

;

e

b;ec;

e

F;

e

K)

M . Therefore(P jF

t

(!))

Y

= P

Y jF

t

(!) = P

(X

t+s

)

s2R

+

jF

t

(!) is a solution-measure to this random martingale
problem forP -almost any! 2 
. The proof works basically unchanged for�(X

u

: u 2

[0; t]) instead ofF
t

. �

PROOF OF THE REMARKS.

1. By Jacod (1979), (1.1),X is indistinguishable from an(F
t

)

t2R

+

-adapted processeX.
It follows from Lemma 2.32 that((
;F; (F

t

)

t2R

+

; P );

e

X) is also a solution-process
to the martingale problem(�; �; b; c; F;K)

M . Moreover, it is easy to see that for any
Blackwell space-valued, measurable mappingZ : 
 ! (E;E), any version of the
regular conditional distributionPZjF

t is a version ofPZjF

P

t as well. This shows the
claim.

2. If the filtration is the canonical filtration of a càdlàg processX andF = F

1�

, then
F = �(X), whereX here means the mapping
 ! (D

d

;D

d

). Using Theorem
III.25 in Dellacherie & Meyer (1978), one easily verifies that if the�-field F on
 is
generated by a Blackwell space-valued mappingX, then(
;F) is a Blackwell space
as well. �

2.8 Existence and Uniqueness Theorems

We have motivated martingale problems as stochastic analogues of ordinary differential
equations. In order for them to be useful in practice, we need some existence and unique-
ness results. Statements of this kind are proved in this section. We have seen in Example
2 in Section 2.7 that ODE's can be interpreted as specific cases of martingale problems.
Since existence and uniqueness results for ODE's usually rely on some kind of Lipschitz
and growth conditions, we cannot hope for more for arbitrary martingale problems. The as-
sumptions in the following theorem, which is explained in greater detail below, are exactly
of this kind.
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Theorem 2.37 Let (�; �; b; c; F;K)

M be a martingale problem inRd . We make the follow-
ing assumptions.

Existence: Suppose thatc = uu

> for somePd-measurable mappingu : D

d

�R

+

! R

d�d .
Moreover, assume thatF can be written as a sumF = �

1

+ �

2

+ �

3

of transition
kernels�

1

; �

2

; �

3

from (D

d

� R

+

;P

d

) into (R

d

;B

d

) with the following properties.

1. There is someM
1

2 R

+

such that for any(�!; t) 2 D

d

� R

+

we have�
1

((�!; t);

R

d

) �M

1

.

2. For any� 2 R

+

there is an increasing mappingM
2

: R

+

! R

+

such that
for any (�!; t) 2 D

d

� R

+

with k�!k�
t

:= supfj�!

s

j : s 2 [0; t]g � � we have
�

2

((�!; t);R

d

) �M

2

(t).

3. There exist a finite measure� on thep-dimensional sphereSp := fx 2 R

p+1

:

jxj = 1g (for somep 2 N), a (Pd
B(Sp)
B
+

)-measurable mappingg : D d

�

R

+

�S

p

�R

+

! R

d with g(�; �; �; 0) = 0 and a(Pd
B(Sp)
B
+

)-measurable
mapping� : D d

�R

+

�S

p

�R

+

! R

+

such that for any(�!; t) 2 D

d

�R

+

we
have

�

3

((�!; t); �) = �((�!; t); �)

g(�!;t;�;�)

(�)

(i.e. the measure�
3

((�!; t); �) is the image of the measure�((�!; t); �) under the
mapping(n; r) 7! g(�!; t; n; r)), where the transition kernel� from (D

d

�

R

d

;P

d

) into (S

p

� R

+

;B(S

p

)
 B

d

) is defined by

�((�!; t); d(n; r)) := �(�!; t; n; r) dr�(dn):

Linear growth conditions: There are measurable mappingsM
3

;M

4

;M

5

;M

6

: R

+

! R

+

with
R

t

0

M

i

(s) ds < 1 for i = 3; 4; 5; 6 and anyt 2 R

+

such that for any(�!; t) 2
D

d

� R

+

we have

�

�

�

b

t

(�!)�

Z

x (�

1

+ �

2

)((�!; t); dx)

�

�

�

�M

3

(t)(1 + k�!k

�

t

);

d

X

i;j=1

ju

ij

t

(�!)j

2

�M

4

(t)(1 + k�!k

�

t

)

2

;

Z

jxj �

2

((�!; t); dx) � M

5

(t)(1 + k�!k

�

t

);

Z

jxj

2

�

3

((�!; t); dx) � M

6

(t)(1 + k�!k

�

t

)

2

;

wherek�!k�
t

:= supfj�!

s

j : s 2 [0; t]g.

Regularity conditions on �: There is a(B
+


B(S

p

))-measurable mappingR : R

+

�S

p

!

R

+

such that for any(t; n) 2 R

+

� S

p we have

1. �(�!; t; n; r) 6= 0 if and only ifr 2 (0; R(t; n)] n f1g,
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2.
R

R(t;n)

r

�(�!; t; n; er) der <1 for any �! 2 D

d , r > 0,

3. The mapping�(�; t; n; �) : D d

t

�((0; R(t; n)]nf1g)! R is continuous and in its
first argument Fréchet-differentiable with continuous derivativeD

1

�(�; t; n; �) :

D

d

t

� ((0; R(t; n)] n f1g)! L (D

d

t

;R).

4. For any� 2 R

+

, there exists a measurable mappingM
7

: R

+

! R

+

with
R

1

r

M

7

(er) der <1 for anyr > 0 and such that

kD

1

�(�!; t; n; r)k �M

7

(r) (2.13)

for any �! 2 D

d

t

with k�!k�
t

� � and anyr 2 (0; R(t; n)).

(Observe that by predictability the mapping�! 7! �(�!; t; n; r) isDd

t�

-measurable and
thus depends only on(�!

s

)

s2[0;t]

. Therefore, we may identify the mapping�(�; t; n; �) :
D

d

� R

+

! R with a mappingD d

t

� R

+

! R (which we call again�), where
D

d

t

:= f� : [0; t] ! R

d

: � càdlàgg. By endowingD d

t

with the sup-normk � k�
t

(i.e.k�k�
t

:= supfj�

s

j : s 2 [0; t]g), we obtain a Banach space and hence continuity,
Fréchet-differentiability etc. as above make sense. If we writeD

1

�(�!; t; n; r) for �! 2
D

d in the sequel, then this is to be understood asD

1

�((�!

s

)

s2[0;t]

; t; n; r).)

Local Lipschitz conditions: For any� 2 R

+

there exist measurable mappingsM
8

: R

+

�

S

p

� R

+

! R

+

, M
9

: R

+

� S

p

� R

+

! R

+

, L
1

: R

+

! R

+

, L
2

: R

+

! R

+

,
L

3

: R

+

�S

p

! R

+

, L
4

: R

+

�S

p

�R

+

! R

+

withL
4

(�; �; 0) = 0 such that for any
t 2 R

+

the following conditions hold.

1. For anyn 2 Sp, r 2 R

+

and any�! 2 D

d with k�!k�
t

� � we have

(

R

R(t;n)

r

kD

1

�(�!; t; n; er)k der)

2

�(�!; t; n; r)

�M

8

(t; n; r);

�(�!; t; n; r) �M

9

(t; n; r);

where we set0=0 := 0.

2.
Z

t

0

L

i

(s) ds <1 for i = 1; 2;

Z

t

0

Z

L

2

3

(s; n)

Z

R

+

M

8

(s; n; r) dr�(dn) ds <1;

Z

t

0

Z Z

R

+

L

2

4

(s; n; r)M

9

(s; n; r) dr�(dn) ds <1:

3. For any!; �! 2 D

d with k!k�
t

� �, k�!k�
t

� �, anyn 2 S

p and anyr; �r 2 R

+

we have
�

�

�

b

t

(!)�

Z

x (�

1

+ �

2

)((!; t); dx)� b

t

(�!) +

Z

x (�

1

+ �

2

)((�!; t); dx)

�

�

�

� L

1

(t)k! � �!k

�

t

;
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d

X

i;j=1

ju

ij

t

(!)� u

ij

t

(�!)j

2

� L

2

(t)(k! � �!k

�

t

)

2

;

jg(�!; t; n; r)� g(�!; t; n; �r)j � L

3

(t; n)jr � �rj;

jg(!; t; n; r)� g(�!; t; n; r)j � L

4

(t; n; r)k! � �!k

�

t

:

Under all these conditions there exists a unique solution-measure to the given martingale
problem.

Before we turn to some corollaries we want to explain the assumptions of Theorem2.37.
For the drift and diffusion coefficientsb; c (or b; u) we assume local Lipschitz and linear
growth conditions, as is well-known from results on SDE's. There is no conditiononK.
The jump transition kernelF is decomposed into three parts. The first one (�

1

) has to be
of bounded jump intensityM

1

, but faces no additional condition. Another part (�

2

) is of
locally bounded jump intensityM

2

and must fulfill a growth, but no Lipschitz condition.
Finally, we have a third part�

3

, which is of more complicated structure and only comes into
play if the local jump intensity is infinite. The kernel�

3

is the image of another kernel�
under some mappingg that has been introduced to add some flexibility, but which can often
be chosen very simple (e.g.g(�!; t;�1; r) := �r in the cased = 1, p = 0). The radial
part of the measure� is assumed to have a density� that is in some sense continuously
differentiable, which is a hidden local Lipschitz condition. The mappingg also has to fulfill
Lipschitz conditions in the first and the fourth argument. The role ofg and� may become
clearer in the two examples below.

The proof of Theorem 2.37 basically works by transforming the martingale problem
into a stochastic differential equation with respect to a Wiener process and a fixed Poisson
random measure, so that existence and uniqueness results for SDE's can be applied.This
transformation has to be carried out sufficiently smoothly. Otherwise, the Lipschitz condi-
tions on the coefficients of the martingale problem do not carry over to the corresponding
SDE. This is difficult for the jump part. In a sense, the key idea underlying this part of the
proof is an application of the simple result that for any�j

[0;1]

-distributed random variable
X and any probability measureQ on (R;B), the random variableF�1

Q

(X) isQ-distributed,
whereF�1

Q

here denotes the pseudo inverse of the cumulative distribution functionF

Q

ofQ.

Corollary 2.38 For any discrete-time martingale problem(�; �; 0; 0; 0; K)

M in R

d there
exists a unique solution-measure.

The following corollary considers the case that the process is constant betweenits jumps
and the jump intensity is bounded.

Corollary 2.39 Let (�; �; b; 0; F;K)

M be a martingale problem (inRd ) andM 2 R

+

such
that for any(�!; t) 2 D

d

� R

+

we haveF ((�!; t);Rd) � M andb
t

(�!) =

R

xF ((�!; t); dx).
Then there exists a unique solution-measure.

If the situation is basically as in Corollary 2.39, but the jump intensity is onlylocally
bounded, one has to add a growth condition.
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Corollary 2.40 Let (�; �; b; 0; F;K)

M be a martingale problem inRd with b
t

(�!) =

R

x

F ((�!; t); dx) for any(�!; t) 2 D

d

�R

+

. Suppose that for any� 2 R

+

there is an increasing
mappingM

1

: R

+

! R

+

such that for any(�!; t) 2 D

d

� R

+

with k�!k�
t

� � we have
F ((�!; t);R

d

) � M

1

(t). Moreover, assume that there exists a measurable mappingM

2

:

R

+

! R

+

with
R

t

0

M

2

(s) ds < 1 for any t 2 R

+

such that for any(�!; t) 2 D

d

� R

+

we
have

R

jxjF ((�!; t); dx) �M

2

(t)(1 + k�!k

�

t

). Then there exists a unique solution-measure.

If there are no jumps present (or only at fixed times), one may apply the following

Corollary 2.41 Let (�; �; b; c; 0; K)

M be a martingale problem inRd . Suppose thatc =

uu

> for somePd-measurable mappingu : D

d

� R

+

! R

d�d . Moreover, we assume

Linear growth conditions: There are measurable mappingsM
1

;M

2

: R

+

! R

+

with
R

t

0

M

i

(s) ds <1 for i = 1; 2 and anyt 2 R

+

such that for any(�!; t) 2 D

d

� R

+

we
have

jb

t

(�!)j � M

1

(t)(1 + k�!k

�

t

);

d

X

i;j=1

ju

ij

t

(�!)j

2

� M

2

(t)(1 + k�!k

�

t

)

2

:

Local Lipschitz conditions: For any� 2 R

+

there exist measurable mappingsL
1

: R

+

!

R

+

, L
2

: R

+

! R

+

with
R

t

0

L

i

(s) ds < 1 for i = 1; 2 and anyt 2 R

+

such that
the following condition holds. For anyt 2 R

+

and any!; �! 2 D

d with k!k�
t

� �,
k�!k

�

t

� � we have
jb

t

(!)� b

t

(�!)j � L

1

(t)k! � �!k

�

t

;

d

X

i;j=1

ju

ij

t

(!)� u

ij

t

(�!)j

2

� L

2

(t)(k! � �!k

�

t

)

2

:

Then there exists a unique solution-measure.

The following corollary applies to quite general situations where the jump intensity is locally
bounded. Observe that no Lipschitz condition on the jumps is needed here.

Corollary 2.42 Let (�; �; b; c; F;K)

M be a martingale problem inRd . We make the follow-
ing assumptions.

Existence: Suppose thatc = uu

> for somePd-measurable mappingu : D

d

�R

+

! R

d�d .
Moreover, assume that for any� 2 R

+

there is an increasing mappingM
1

: R

+

!

R

+

such that for any(�!; t) 2 D

d

�R

+

withk�!k�
t

� � we haveF ((�!; t);Rd) �M

1

(t).

Linear growth conditions: There are measurable mappingsM
2

;M

3

;M

4

: R

+

! R

+

with
R

t

0

M

i

(s) ds <1 for i = 2; 3; 4 and anyt 2 R

+

such that for any(�!; t) 2 D

d

� R

+

we have
�

�

�

b

t

(�!)�

Z

xF ((�!; t); dx)

�

�

�

�M

2

(t)(1 + k�!k

�

t

);
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d

X

i;j=1

ju

ij

t

(�!)j

2

�M

3

(t)(1 + k�!k

�

t

)

2

;

Z

jxjF ((�!; t); dx)j �M

4

(t)(1 + k�!k

�

t

):

Local Lipschitz conditions: For any� 2 R

+

there exist measurable mappingsL
1

: R

+

!

R

+

, L
2

: R

+

! R

+

with
R

t

0

L

i

(s) ds < 1 for i = 1; 2 and anyt 2 R

+

such that
the following condition holds. For anyt 2 R

+

and any!; �! 2 D

d with k!k�
t

� �,
k�!k

�

t

� � we have
�

�

�

b

t

(!)�

Z

xF ((!; t); dx)� b

t

(�!) +

Z

xF ((�!; t); dx)

�

�

�

� L

1

(t)k! � �!k

�

t

;

d

X

i;j=1

ju

ij

t

(!)� u

ij

t

(�!)j

2

� L

2

(t)(k! � �!k

�

t

)

2

:

Then there exists a unique solution-measure to the given martingale problem.

The following last corollary leads to processes with independent increments (cf. Remark 5
below).

Corollary 2.43 Let (�; �; b; c; F;K)

M be a martingale problem inRd such thatb; c; F;K
are deterministic (i.e. they do not depend on�! 2 D

d ). Then there exists a unique solution-
measure.

Remarks.

1. By Corollary 2.38 any discrete-time martingale problem (i.e.b = 0, c = 0, F = 0),
e.g. for Markov chains and ARMA(p; q) time series (cf. Examples 1 and 3 in Section
2.7) has a unique solution-measure. But one should be aware that in the case of time
series models this tells us nothing about the existence ofstationarysolutions.

2. For ODE's (cf. Example 2 in Section 2.7) we have, by Corollary 2.41 in the case
c = 0, � = ?, K = 0, existence of a unique solution iff fulfills local Lipschitz and
linear growth conditions. This is in line with Picard-Lindelöf type theorems inreal
analysis.

3. For diffusions (cf. Example 4 in Section 2.7) we obtain (by Corollary 2.41) the usual
existence and uniqueness results under local Lipschitz and linear growth conditions.
Note that there is a much stronger result by Stroock and Varadhan in the case of non-
vanishing diffusion coefficient (cf. JS, Theorem III.2.34).

4. In a martingale problem of the form(�; "
0

; (

R

xF

t

(dx))

t2R

+

; 0; F;K)

M there is no
diffusion and no real drift part. The term(

R

xF

t

(dx))

t2R

+

just means that the jumps
are not compensated as it would be done in the caseb = 0. Such a martingale problem
corresponds to amultivariate point process. By Corollaries 2.39 and 2.40 we know
that a unique solution-measure exists ifF has globally bounded jump intensity or if it
has locally bounded jump intensity and meets an additional growth condition.
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5. By Corollary 2.43 martingale problems with deterministic coefficients havea unique
solution-measure. If� = "

0

, then the solution-processes are processes with indepen-
dent (and in the case of time-independent coefficients also stationary) increments.

If the jump measureF
t

is infinite, one cannot apply Corollaries 2.38 to 2.42, but has to fall
back directly on Theorem 2.37. We present two examples where the role of the mappingsg

and� becomes apparent in the proof.

Examples. Both of the following martingale problems may be considered as stock price
models, where the same events not only change the return processX

1

t

but also increase the
volatility X

2

t

of the stock. The difference between the two models is that in Example 1
volatility can be interpreted as anarrival rate of price changes, whereas in Example 2 it is a
measure of the averagesizeof stock price jumps.

1. Fix parameters� 2 R, �; �; �; x
0

2 R

�

+

, x
1

2 (�;1). Let' be the measure on(R;B)
with �-densityx 7! 1

jxj

e

�jxj. For any((�!1

; �!

2

); t) 2 D

2

� R

+

we define the measure
F (((�!

1

; �!

2

); t); �) as the image ofh(�!2

t

)' under the mappingR ! R

2 , x 7! (�x; jxj),
whereh : R ! R is aC1-function such thath(x) � �=2 andh0(x) 2 [0; 1] for any
x 2 R, andh(x) = x for anyx 2 (�;1). Moreover, define the drift byb

t

(�!) :=

(�;�(�!

2

t

��)�+

R

x

2

F ((�!; t); d(x

1

; x

2

))) for any(�!; t) = ((�!

1

; �!

2

); t) 2 D

2

�R

+

.
Then the martingale problem(?; "

(x

0

;x

1

)

; b; 0; F; 0)

M in R

2 has a unique solution-
measure.

For a solution-process(X1

; X

2

), we interpretX2 as a volatility. It increases due to
positive jumps (which also affectX1) and is pulled back towards the lower bound
� by the drift term�(�!2

t

� �)�. The term
R

x

2

F ((�!; t); d(x

1

; x

2

)) just offsets the
compensation of the jumps. Therefore,X2 always stays above�. The functionh
(which is the identity for values above�) is only introduced to make the martingale
problem meet the conditions of Theorem 2.37.

2. Fix parameters� 2 R, �; �; �; x
0

2 R

�

+

, x
1

2 (�;1), and let'; h be as in the previ-
ous example. For any((�!1

; �!

2

); t) 2 D

2

�R

+

we define the measureF (((�!1

; �!

2

); t);

�) as the image of' under the mappingR ! R

2 , x 7! (�h(�!

2

t

)x; h(�!

2

t

)jxj). More-
over, defineb as in Example 1. Then the martingale problem(?; "

(x

0

;x

1

)

; b; 0; F; 0)

M

in R

2 has a unique solution-measure. As in the previous example, the functionh has
been put in to allow for the application of Theorem 2.37.

Of course the existence of a unique solution can only be a first step if you want to apply
martingale problems to real-world phenomena. You also need efficient numerical algorithms
for explicit calculations. More specifically, one may ask for procedures yieldingE(f(X))

if X is a solution-process to a given martingale problem andf : D

d

! R some continuous
mapping. Whereas there is extensive literature for martingale problems withoutjumps (i.e.
for SDE's driven by a Wiener process, cf. e.g. Kloeden & Platen (1992)), there is less dealing
with the jump case. Since discontinuous models are of equal interest especiallyin finance
applications, we hope to address this question in future research.
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Proofs

PROOF OFTHEOREM 2.37. The proof will be broken down into many steps.

Definition 2.44 A stochastic differential equation (SDE)(�; �; a; u; w;Q)SDE is given by

� a discrete set� � R

�

+

,

� a probability measure� on (Rd ;Bd

),

� aPd-measurable mappinga : D d

� R

+

! R

d ,

� aPd-measurable mappingu : D

d

� R

+

! R

d�d ,

� a Lusin spaceE =

:

[

4

i=1

E

i

with its Borel-�-field E, whereE
1

; E

2

; E

3

; E

4

are open
subsets ofE (cf. Jacod (1979), p. 66),

� a (Pd 
 E)-measurable mappingw : D

d

� R

+

� E ! R

d ,

� a measureQ onE such thatQ
1

; Q

2

are�-finite,Q
3

is finite, andQ
4

(E) � 1, where
Q

i

(�) := Q(� \ E

i

) for i = 1; 2; 3; 4.

Remark. By the previous definition we refer to the SDE

dX

t

= a

t

(X) dt+u

t

(X)�dW

t

+

Z

E

w(X; t; x)(p

1

�q

1

)(dt; dx)+

4

X

i=2

Z

E

w(X; t; x) p

i

(dt; dx);

(2.14)
wherep

i

is an extended Poisson random measure onR

+

�E with compensatorq
i

(dt; dx) :=

Q

i

(dx)dt for i = 1; 2; 3 andq
4

(dt; dx) := Q

4

(dx)

P

s2�

"

s

(dt).

Definition 2.45 1. A tupel ((
;F; (F
t

)

t2R

+

; P;W; p); X) is calledsolution-process to
the SDE (2.14) on[0; T ] (or, more exactly, to the SDE(�; �; a; u; w;Q)SDE on [0; T ])
if

� (
;F; (F

t

)

t2R

+

; P ) is a filtered probability space,

� W is aRd -valued standard Wiener process (on that space),

� p is an extended Poisson measure onR

+

� E with intensity measureq =

P

4

i=1

q

i

, whereq
i

(dt; dx) := Q

i

(dx) dt for i = 1; 2; 3 andq
4

(dt; dx) := Q

4

(dx)

(

P

s2�

"

s

)(dt) (Moreover, define the extended Poisson measuresp

i

onR
+

� E

by p
i

(dt; dx) = 1

E

i

(x) p(dt; dx) for i = 1; 2; 3; 4),

� X is aRd -valued semimartingale on the above space withP

X

0

= �,

�

R

t

0

ja

s

(X)j ds <1 P -almost surely for anyt 2 R

+

,

�

R

t

0

ju

ij

s

(X)j

2

ds <1 P -almost surely for anyt 2 R

+

and anyi; j 2 f1; : : : ; dg,

�

R

t

0

R

jw(X; s; x)j

2

Q

1

(dx) ds <1 P -almost surely for anyt 2 R

+

,

�

R

[0;t]�E

jw(X; s; x)j p

2

(dx; ds) <1 P -almost surely for anyt 2 R

+

,
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� T is a stopping time,

� X is a solution to Equation (2.14) on[0; T ] (i.e. we have

X

T^t

= X

0

+

Z

T^t

0

a

s

(X) ds+

d

X

j=1

Z

T^t

0

u

�j

s

(X) dW

j

s

+

Z

[0;T^t]�E

w(X; s; x) (p

1

� q

1

)(ds; dx)

+

4

X

i=2

Z

[0;T^t]�E

w(X; s; x) p

i

(ds; dx) (2.15)

for anyt 2 R

+

P -almost surely).

2. The tupel is calledsolution-process to the SDEif T =1 P -almost surely.

3. The lawPX on (D d

;D

d

) of a solution-process (onR
+

) of the SDE is calledsolution-
measureto the SDE.

Let (�; �; a; u; w;Q)SDE be a SDE inRd . We introduce three kinds of conditions.

Integrability conditions (I) For any�! 2 D

d and anyt 2 R

+

we have

Z

t

0

ja

s

(�!)j ds <1;

d

X

i;j=1

Z

t

0

ju

ij

s

(�!)j

2

ds <1;

Z

t

0

Z

jw(�!; s; x)j

2

Q

1

(dx) ds <1:

Lipschitz conditions (L) For any� 2 R

+

there exists a measurable mappingL : R

+

!

R

+

with
R

t

0

L(s) ds <1 for anyt 2 R

+

, such that for anyt 2 R

+

and any!; �! 2 D

d

with k!k�
t

� �, k�!k�
t

� �, we have

ja

t

(!)� a

t

(�!)j � L(t)k! � �!k

�

t

;

d

X

i;j=1

ju

ij

t

(!)� u

ij

t

(�!)j

2

� L(t)(k! � �!k

�

t

)

2

;

Z

E

jw(!; t; x)� w(�!; t; x)j

2

Q

1

(dx) � L(t)(k! � �!k

�

t

)

2

:

Moreover, for any� 2 R

+

there are increasing mappingsM
2

: R

+

! R

+

and
H : R

+

! E (i.e.H(s) � H(t) for s � t) with Q
2

(H(t)) � M

2

(t) for anyt 2 R

+

and such that for anyt 2 R

+

, any�! 2 D

d with k�!k�
t

� � and anyx 2 E
2

nH(t), we
havew(�!; t; x) = 0.
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Growth conditions (G) There exists a measurable mappingM : R

+

! R

+

with
R

t

0

M(s)

ds <1 for anyt 2 R

+

such that for any(�!; t) 2 D

d

� R

+

we have

ja

t

(�!)j �M(t)(1 + k�!k

�

t

);

d

X

i;j=1

ju

ij

t

j

2

�M(t)(1 + k�!k

�

t

)

2

;

Z

jw(�!; t; x)j

2

Q

1

(dx) �M(t)(1 + k�!k

�

t

)

2

;

Z

jw(�!; t; x)jQ

2

(dx) �M(t)(1 + k�!k

�

t

);

Remark. The growth conditions (G) imply the integrability conditions (I).

Lemma 2.46 Assume that the Lipschitz conditions (L) hold. Moreover, suppose that the
processesX and eX on(
;F; (F

t

)

t2R

+

; P;W; p) are solution-processes to the SDE (2.14) on
[0; T ], and thatX

0

=

e

X

0

P -almost surely. ThenXT and eXT are indistinguishable.

Proposition 2.47 LetM be a locally square-integrable martingale withM
0

= 0 andT a
stopping time. Then there is a constantc 2 R

+

, independent ofM andT , such that

kM

T

k

S

1

� ck(hM;Mi

T

)

1

2

k

L

1

:

PROOF. SinceMT is a local martingale, there is, by Jacod (1979), (2.34), a constantc=2 2

R

+

such thatkMT

k

S

1

� c=2k([M

T

;M

T

]

1

)

1

2

k

L

1. Since[MT

;M

T

] 2 A

+

loc

(cf. JS, I.4.50c),
it follows from Lenglart et al. (1980), Théorème 4.1 and Dellacherie & Meyer (1982),
VII.41.3 thatE(([MT

;M

T

]

1

)

1

2

) � 2E((hM

T

;M

T

i

1

)

1

2

) = 2E((hM;Mi

T

1

)

1

2

), which
yields the claim. �

PROOF OF LEMMA 2.46. Define the stopping timeS := infft 2 R

+

: X

t

6=

e

X

t

g.
By definition we have thatXS�

=

e

X

S�. By predictability �! 7! a

t

(�!), �! 7! u

t

(�!),
�! 7! w(�!; t; x) areDd

t�

-measurable mappings for anyt 2 R

+

(cf. JS, I.2.4a). SinceDd

t�

is
generated by the projections strictly beforet, it follows thata

t

(�!) etc. depend only on�!j
[0;t)

.
Hence, we havea

t^S

(X) = a

t^S

(

e

X), u
t^S

(X) = u

t^S

(

e

X),w(X; t^S; x) = w(

e

X; t^S; x)

for anyt 2 R

+

, x 2 E. By Equation (2.14) this impliesXT^S

=

e

X

T^S. Assume now that
P (S < T ) > 0. Then one can find� 2 N , N 2 N such thatP (kXS

k

�

1

� � � 1; S <

N; S < T ) �

1

2

P (S < T ). Now chooseL andH as in the Lipschitz conditions (L) relative
to this�. We define

R := T ^

�

S _ inf

n

t > S : (jX

t

j _ j

e

X

t

j) > � or
Z

t

S

L(s) ds >

1

4

+

1

16c

2

(d

2

+ d)

2

or p
2

(ftg �H(N)) + p

3

(ftg � E) > 0 or t 2 � [ [N;1)

o�

:
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Observe that, sinceq
2

([0; t]�H(N)) <1 andq
3

([0; t]�E) <1 for anyt 2 R

+

, there are
P -almost surely only finitely manyt in any compact interval such thatp

2

(ftg � H(N)) +

p

3

(ftg � E) > 0 (cf. JS, II.4.10). Therefore,R is a stopping time withR � S P -almost
surely andP (R > S) > 0. By Equation (2.15), the triangular inequality, Proposition 2.47,
JS, II.1.33a and (L), we have

kX

R�

�

e

X

R�

k

S

1
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Z
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(w(X; s; x)� w(

e
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1
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1

)(ds; dx)

�
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+

Z

�
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�

a

s

(X)� a

s

(

e
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�
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+

d

X

j=1

�

Z

�

0

(u

�j

s

(X)� u

�j

s

(

e

X)) dW

j

s

�
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S
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�
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0

(a

s

(X)� a

s

(

e

X)) ds

�
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S

1

+

d

X
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�
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�

0

(u

ij

s

(X)� u

ij

s

(

e
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s

�
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1

+

d
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(

e

X; s; x)) (p
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1

)(ds; dx)

�
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0
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(X)� a

s

(

e
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+ c

d
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Z

R

0
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ij

s

(X)� u

ij

s

(

e

X))

2
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�
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2







L

1

+ c

d

X
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�

Z

R

0

Z

(w

i

(X; s; x)� w

i

(

e

X; s; x))

2

Q

1

(dx) ds

�

1

2







L

1

� E

�

k(X �

e

X)

R�

k

�

1

�

Z

R

S

L(s) ds+ c(d

2

+ d)

�

Z

R

S

L(s) ds

�

1

2

�

�

�

1

2

kX

R�

�

e

X

R�

k

S

1

;

wherek � k
S

1 is defined in Definition A.8. This clearly is impossible, sincekXR�

�

e

X

R�

k

S

1

� 2� andP (XR�

6=

e

X

R�

) > 0. ThereforeP (S < T ) = 0, and the claim
follows. �

Lemma 2.48 Suppose that the integrability conditions (I) and the Lipschitz conditions (L)
hold. Moreover, fix� 2 R

+

and a space(
;F; (F
t

)

t2R

+

; P;W; p) as in Definition 2.45.
Assume that there exists aF

0

-measurable,Rd -valued random variableX
0

with PX

0

= �.
Then there is a solution-processX to SDE (2.14) (on that space) on[0; T �;X ], whereT �;X :=

infft 2 R

+

: kXk

�

t

� �g.

PROOF. We define a sequence of stopping times(R

n

)

n2N

recursively byR
0

= 0 and

R

n+1

:= infft > R

n

: t 2 � or t > R

n

+ 1 or
Z

t

R

n

L(s) ds >

1

4

+

1

16c

2

(d

2

+ d)

2

or p
2

(ftg �H(R

n

+ 1)) + p

3

(ftg � E) > 0g:

As in the proof of Lemma 2.46, we have for anyM 2 R

+

thatp
2

(ftg�H(M)) + p

3

(ftg�

E) > 0 pathwise only for finitely manyt in any compact interval. Hence,R
n

" 1 P -almost
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surely. By assumption there is a solution-process to the SDE on[0; R

0

]. In order to prove
the lemma, it suffices to show that, given a solution-processX on [0; T

�;X

^ R

n

] for some
n 2 N , there exists a processeX that coincides withX on [0; T �;X ^R

n

] and solves the SDE
on [0; T �; eX ^ R

n+1

].
Fix n 2 N and letX denote a solution on[0; T �;X ^ R

n

]. We define an operatorF :

S

1

! S

1 (cf. Definition A.8 in the appendix) by

F (Y )

t

:=

�

X

R

n

+

Z

�

0

1

[0;R

n

]

C(s)a

s

(Y4�) ds+

d

X

i;j=1

Z

�

0

1

[0;R

n

]

C (s)u

ij

s

(Y4�) dW

j

s

+

Z

[0;�]�E

1

[0;R

n

]

C
(s)w(Y4�; s; x) (p

1

� q

1

)(ds; dx)

�

R

n+1

�

t

4�

for anyY 2 S

1, t 2 R

+

, where we definex4� 2 R

d by (x4�)

i

:= (x

i

_ (��)) ^ � for
anyx 2 R

d , i 2 f1; : : : ; dg. Now letY; eY 2 S

1. By basically the same calculation as in the
proof of Lemma 2.46, we havekF (Y )�F (eY )k

S

1

�

1

2

k(Y4�)

R

n+1

�

� (

e

Y4�)

R

n+1

�

k

S

1

�

1

2

kY �

e

Y k

S

1 . Banach's fixed point theorem yields that there is a unique fixed pointY 2 S

1

of F . LetS := R

n+1

^ T

�;Y and define the adapted, càdlàg process

e

X := Y

S�

+

4

X

i=1

Z

E

w(Y; S; x) p

i

(fSg � dx)1

[S;1)

:

By the fixed point property ofY we have thatY R

n

= F (Y )

R

n

= X

R

n

4�. Hence,Y;X are
indistinguishable on[0; R

n

] \ [0; T

�;X

R

n

) = [0; R

n

] \ [0; T

�;Y

). By Y = F (Y ), by Y
t

=

Y

t

4� andXR

n

= Y

R

n on[0; T �;Y ) and byp
i

((R

n

; R

n+1

)�E) = 0 for i = 2; 3; 4, we obtain
thatY solves SDE (2.14) on[0; R

n+1

^T

�;Y

) = [0; S). As in the proof of Lemma 2.46, one
shows thateXS�

= Y

S� impliesa
s

(

e

X) = a

s

(Y ), u
s

(

e

X) = u

s

(Y ), w( eX; s; x) = w(Y; s; x)

for anys � S. Hence,eX also solves the SDE (2.14) on[0; S), and, by its definition, also
on [0; S]. Since[0; R

n

^ T

�;X

] � [0; S], bothX and eX are solutions to SDE (2.14) on
[0; R

n

^ T

�;X

]. By Lemma 2.46 it follows thateX coincides withX on [0; R

n

^ T

�;X

]. It
remains to be shown that[0; R

n+1

^ T

�;

e

X

] � [0; S]. Observe that on[0; R
n+1

) \ [0; S] we
haveY =

e

X4�, and therefore[0; R
n+1

) \ [0; T

�;

e

X

] = [0; R

n+1

) \ [0; T

�;Y

]. From here,
[0; R

n+1

^ T

�;

e

X

] � [0; S] easily follows. �

Lemma 2.49 Suppose that the Lipschitz conditions (L) and the growth conditions (G) hold.
Moreover, fix a space(
;F; (F

t

)

t2R

+

; P;W; p) as in Definition 2.45. Assume that there
exists aF

0

-measurable,Rd -valued random variableX
0

with P

X

0

= �. Then there is a
solution-processX to SDE (2.14) (on this space and onR

+

).

Proposition 2.50 For a probability space(
;F; P ), let (F
n

)

n2N

be an increasing sequence
of sub-�-fields and(a

n

)

n2N

a sequence inR
+

with
P

1

n=0

a

n

=1. For anyn 2 N letA
n

2

F

n

such thatP (A
n+1

jF

n

) � a

n

P -almost surely. Then we haveP (lim sup

n!1

A

n

) = 1.

PROOF. We will show by induction onm (for fixedn) thatP (\n+m
k=n

A

C

k

) �

Q

n+m

k=n

(1� a

k

)

for anyn 2 N , m 2 N [ f�1g. The claim then follows as in the proof of the usual Borel-
Cantelli lemma (cf. Bauer (1978), Lemma 35.1). There is nothing to prove form = �1. The
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induction step follows fromP (\n+m+1

k=n

A

C

k

) = E(1

\

n+m

k=n

A

C

k

E(1

A

C

n+m+1

jF

n+m

)) �

Q

n+m

k=n

(1�

a

k

)(1� a

n+m+1

). �

Proposition 2.51 For any square-integrable martingaleM and any stopping timeT we
haveE(sup

t2[T;1)

(M �M

T

)

2

t

jF

T

) � 4E((M �M

T

)

2

1

jF

T

) P -almost surely.

PROOF. Fix C 2 F

T

. We have to show thatE(1
C

sup

t2[T;1)

(M �M

T

)

2

t

) � E(1

C

4(M �

M

T

)

2

1

). This inequality follows immediately if we apply Doob's inequalityE(sup
t2R

+

X

2

t

)

� 4E(X

2

1

) (cf. JS, I.1.43) to the square-integrable martingaleX = (X

t

)

t2R

+

on the filtered
probability space(
;F; (G

t

)

t2R

+

; P ), whereX
t

:= (M

T+t

�M

T

)1

C

andG
t

:= F

T+t

for
anyt 2 R

+

. �

Corollary 2.52 For any locally square-integrable martingaleM and any stopping timeT
we haveE(sup

t2[T;1)

(M �M

T

)

2

t

jF

T

) � 4E(hM �M

T

;M �M

T

i

1

jF

T

) P -almost surely.

PROOF. By localization it is enough to consider the case thatM is a square-integrable mar-
tingale. The previous proposition implies that we haveE(sup

t2[T;1)

(M � M

T

)

2

t

jF

T

) �

4E((M �M

T

)

2

1

jF

T

) = 4E(hM �M

T

;M �M

T

i

1

jF

T

). �

Proposition 2.53 Let � be a random measure onR
+

� E with compensator� andw :


�R

+

�E ! R a non-negative predictable mapping. Then we have for any stopping time
T that

E((w1

[0;T ]

C) � �

1

jF

T

) = E((w1

[0;T ]

C) � �

1

jF

T

) P -almost surely:

PROOF. It suffices to show thatE((w1
[0;T ]

C
) � �

1

1

F

) = E((w1

[0;T ]

C
) � �

1

1

F

) for any
F 2 F

T

. This follows from the definition of the compensator, since by JS, I.2.5 the map-
ping (!; t; x) 7! w(!; t; x)1

F

(!)1

[0;T ]

C(t) is predictable and non-negative. �

PROOF OFLEMMA 2.49. By Lemma 2.48 there is a solution-processX

(N) on [0; TN;X
(N)

]

for any N 2 N . For anyN;N 0

2 N with N � N

0 we have by Lemma 2.46 that
X

(N)

; X

(N

0

) coincide on[0; TN;X
(N)

^ T

N

0

;X

(N

0

)

], and henceTN;X
(N)

� T

N

0

;X

(N

0

)

P -almost
surely. We can therefore define a processX by Xj

[0;T

N;X

(N)

]

:= X

(N)

j

[0;T

N;X

(N)

]

for any

N 2 N andXj
([

N2N

[0;T

N;X

(N)

])

C

:= 0. It remains to be shown that[
N2N

[0; T

N;X

] =

[

N2N

[0; T

N;X

(N)

] = R

+

. We define a sequence(R
n

)

n2N

of stopping times recursively
by R

0

:= 0, R
n+1

:= infft > R

n

: t 2 � [ [n + 1;1) or p
3

(ftg � E) > 0g. As in
the proof of Lemma 2.48, we haveR

n

" 1 P -almost surely forn ! 1. Therefore, it
suffices to show that[0; R

n

] � [

n2N

[0; T

N;X

] (up to an evanescent set) for anyn 2 N .
We proceed by induction. Forn = 0 there is nothing to prove. Now fixn 2 N and as-
sume that[0; R

n

] � [

n2N

[0; T

N;X

]. We define another sequence(S
m

)

m2N

of stopping times
recursively byS

0

:= R

n

, S
m+1

:= infft > R

n

_S

m

: kXk

�

t

� 2kXk

�

S

m

+1g^R

n+1

. By in-
duction onm it follows that[0; S

m

] � [

N2N

[0; T

N;X

] and hence thatX is a solution-process
on [0; S

m

] for anym 2 N . By t
0

:= 0, t
k+1

:= infft > t

k

:

R

t

t

k

M(s) ds >

1

2048d

6

g we define
a sequence(t

k

)

k2N

in R

+

with t
k

" 1. Moreover, letA
m

:= fS

m

< R

n+1

g \ fThere is a
k 2 N such thatt

k

� S

m�1

� S

m

< t

k+1

for anym 2 Ng. If ! 2 A

C

m

for infinitely many



78 Chapter 2. Martingale Problems as a Means to Model DynamicalPhenomena

m 2 N , then we haveS
m

= R

n+1

for somem 2 N . Therefore, it remains to be shown that
P (lim sup

m!1

A

C

m

) = 1. By Proposition 2.50 it suffices to prove thatP (A
m+1

jF

S

m

) �

1

2

for anym 2 N . Fix m 2 N and note thateX := X

S

m+1 is a solution-process on[0; S
m+1

].
Sincep

3

; p

4

have no mass on(R
n

; R

n+1

), we have that the following inequality holds on
A

m+1

.

2kX

S

m

k

�

1

+ 1 � k

e

Xk

�

1

(2.16)

� kX

S

m
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�

1

+

Z

S
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0

1
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m

]
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s

(

e
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d
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(

e
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j
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(

e
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]�E

1
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m
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e

X; s; x)j p

2

(ds; dx): (2.17)

On A

m+1

, we have thatt
k

� S

m

� S

m+1

< t

k+1

for somek 2 N and hence that
R

S

m+1

S

m

M(s) ds <

1

2048d

6

. Therefore, we obtain
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0
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C
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e
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�
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�
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�
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�
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�

�

�

F

S
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�

�
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32

(kX

S

m

k

�

1

+ 1):

By making use of Corollary 2.52, we have
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(
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�

�
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�
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�
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m
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S
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�
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+ 1)

2
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S
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�

�
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6
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�
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2

:

Similarly, we obtain by Corollary 2.52 and JS, II.1.33a
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(
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(
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�

�

�

F
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m
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�

1

128d

3

(kX
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m

k

�

1
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Finally, it follows from Proposition 2.53 that

E

�

1

A

m+1

Z

[0;S

m+1

]�E

1

[0;S

m

]

C (s)jw(

e
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2

(ds; dx)

�

�

�

F

S

m

�

= E

�

1

A

m+1

Z

[0;S

m+1

]�E

1

[0;S

m

]

C(s)jw(

e

X; s; x)j q

2

(ds; dx)

�

�

�

F

S

m

�

�

1

32

(kX

S

m

k

�

1

+ 1):

By Inequality (2.16), at least one of the last four terms in (2.17) has to be greater than
1

4

(kX

S

m

k

�

1

+1). The conditional probability that this is the case for the first of these equals

P

�

A

m+1

\

n

Z

S

m+1

0

1

[0;S

m

]

C
(s)ja

s

(

e

X)j ds >

1

4

(kX

S

m

k

�

1

+ 1)

o

�

�

�

F

S

m

�

�

4

(kX

S

m

k

�

1

+ 1)

E

�

1

A

m+1

Z

S

m+1

0

1
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m

]

C(s)ja

s

(

e

X)j ds

�

�

�

F

S

m

�

�

1

8

:

For the other terms in (2.17) we get similar estimations. Altogether, we haveP (A

m+1

jF

S

m

)

= P (A

m+1

and Inequality (2.16) holdsjF
S

m

) �

1

2

. �

Lemma 2.54 Suppose thatQ
4

= 0 and� = "

x

0

for a x
0

2 R

d . Moreover, assume that the
integrability conditions (I) and the Lipschitz conditions (L) hold. Then there is at most one
solution-measure to SDE (2.14).

PROOF. By Q
4

= 0 we have thatp is a homogeneous Poisson measure. We define the
P

d-measurable mappingba : D d

� R

+

! R

d by

ba

t

= a

t

�

Z

E

(w(t; x)� h(w(t; x)))Q

1

(dx) +

3

X

i=2

Z

E

h(w(t; x))Q

i

(dx);

whereh : R

d

! R

d is given byh(x) := x1

fjxj�1g

. A straightforward calculation shows
that ((
;F; (F

t

)

t2R

+

; P;W; p); X) is a solution-process to SDE (2.14) if and only if it is a
solution-process to the SDE

dX

t

= ba

t

dt+ u

t

dW

t

+ h(w

t

) (dp

t

� dq

t

) + (w

t

� h(w

t

)) dp

t

(2.18)

in the sense of Jacod (1979), (14.73). (There is in fact a small difference. In Jacod (1979),
(14.73), a solutionX is assumed to be càdlàg, but only(FP

t

)

t2R

+

-adapted, whereas for us,
it is only P -almost surely càdlàg, but(F

t

)

t2R

+

-adapted. But by Jacod (1979), (1.1), it is
easy to transform either type of solution into the other.) Let((
;F; (F

t

)

t2R

+

; P;W; p); X)

and((e
; eF; (eF
t

)

t2R

+

;

e

P;

f

W; ep);

e

X) be solution-processes to SDE (2.14). Then they are both
solution-processes to SDE (2.18) as well. This implies thatP

X and eP e

X are solution-
measures to SDE (2.18) in the sense of Jacod (1979), (14.79). By Jacod (1979), (14.94),
we havePX

=

e

P

e

X if we can prove pathwise uniqueness for SDE (2.18). Therefore, it re-
mains to be shown that if((
;F; (F

t

)

t2R

+

; P;W; p); X) and((
;F; (F
t

)

t2R

+

; P;W; p);

e

X)

are two solution-processes to SDE (2.18) (on the same space), then we haveX =

e

X up to
indistinguishability. By the above equivalence two such processesX and eX are solution-
processes to SDE (2.14) as well. The claim now follows from Lemma 2.46. �



80 Chapter 2. Martingale Problems as a Means to Model DynamicalPhenomena

Lemma 2.55 Under the assumptions of Theorem 2.37, there is a solution-measure to the
martingale problem.

PROOF. The idea of the proof is to define a SDE(�; �; a; u; w;Q)SDE having solutions
which also solve the martingale problem. To this end, let�; �; u be as in Theorem 2.37.
Moreover, definea

t

(�!) := b

t

(�!) �

R

x (�

2

+ �

1

)((�!; t); dx) for any (�!; t) 2 D

d

� R

+

.

DefineE :=

:

[

4

i=1

E

i

, whereE
1

:= S

p

� R

+

andE
2

; E

3

; E

4

are disjoint copies ofR.
It is straightforward to show that the topological sumE (i.e. the disjoint union of theE

i

endowed with the sum topology, cf. Querenburg (1973), Definition 3.28) is a Lusin space
whose Borel sets are the unions of Borel subsets ofE

1

; E

2

; E

3

; E

4

. For i = 1; 2; 3; 4, we
define the measureQ

i

onE
i

byQ
1

:= � 
 �j

R

+

, Q
2

:= �j

R

+

, Q
3

:= �j

[0;M ]

, Q
4

:= �j

[0;1]

.
As in Definition 2.44,Q :=

P

4

i=1

Q

i

. Moreover, define the(Pd
B(Sp)
B
+

)-measurable
mappingw

1

: D

d

� R

+

� S

p

� R

+

! R

d by w
1

(�!; t; n; �) := g(�!; t; n;�

�1

(�!; t; n; �)),
where� : D

d

� R

+

� S

p

� R

+

! R

+

, (�!; t; n; r) 7!
R

1

r

�(�!; t; n; er) der and�

�1

:

D

d

� R

+

� S

p

� R

+

! R

+

,

(�!; t; n; �) 7!

�

supfr 2 R

+

: �(�!; t; n; r) � �g if this set is non-empty
0 else.

Let the predictable mappinga : D

d

� R

+

! R

d be given bya
t

= b

t

�

R

x(�

1

+ �

2

)

t

(dx).
For i = 2; 3; 4, choose(Pd 
 B)-measurable mappingsw

i

: D

d

� R

+

� E

i

! R

d such
thatQw

2

(�!;t;�)

2

j

R

d

nf0g

= �

2

(�!; t), Qw

3

(�!;t;�)

3

j

R

d

nf0g

= �

1

(�!; t) for any (�!; t) 2 D

d

� R

+

,

andQw

4

(�!;t;�)

4

j

R

d

nf0g

= K(�!; t)j

R

d

nf0g

for any (�!; t) 2 D

d

� �. By M�

2

we denote the
mappingM

2

in Theorem 2.37, chosen relative to�. W.l.o.g.,M�

2

is increasing in� as
well. Assume that for any�; n 2 N , any (�!; t) 2 D

d

� [0; n] with k�!k�
t

� � and any
x 62 [0;M

�

2

(n)] we havew
2

(�!; t; x) = 0. Finally, definew : D

d

� R

+

� E ! R by
w :=

P

4

i=1

w

i

1

E

i

. We have to show thatw
2

; w

3

; w

4

actually exist. We will do this only
for w

2

, since the argumentation is similar forw
3

; w

4

. Firstly, defineA�;n := f(�!; t) 2

D

d

� R

+

: k�!k

�

t�

2]� � 1; �]; t 2]n � 1; n]g for any�; n 2 N . TheA�;n are predictable
sets (cf. JS, I.2.6), and we haveD d

� R

+

=

:

[

n;�2N

A

�;n. For�; n 2 N , define the transition
kernel��;n

2

from (D

d

�R

+

;P

d

) into (Rd ;Bd

) by��;n
2

((�!; t); G) := 1

A

�;n(�!; t)�

2

((�!; t); G).
Fix �; n 2 N for the moment. Since��;n

2

((�!; t);R

d

) � M

�

2

(n) for any(�!; t) 2 D

d

� R

+

,
there is, by Jacod (1979), (14.50) and Exercise (14.4), a(P

d


 B)-measurable mapping
w

�;n

2

: D

d

�R

+

�R ! R

d with w�;n
2

(�!; t; x) = 0 for x =2 [0;M

�

2

(n)] and��;n
2

((�!; t); G) =

R

1

Gnf0g

(w

�;n

2

(�!; t; x))Q

2

j

[0;M

2

(n)]

(dx) for any (�!; t) 2 D

d

� R

+

and anyG 2 B

d. Now
definew

2

: D

d

� R

+

� R ! R

d by w
2

(�!; t; x) :=

P

�;n2N

1

A

�;n(�!; t)w

�;n

2

(�!; t; x). It is
easy to verify thatw

2

has the above properties.
The rest of the proof of Lemma 2.55 will be broken down into several propositions.

Proposition 2.56 Fix (�!; t; n) 2 D

d

�R

+

�S

p andG 2 B

+

. Then
R

R

+

1

Gnf0g

(�

�1

(�!; t; n;

�)) d� =

R

R

+

1

G

(r)�(�!; t; n; r) dr.

PROOF. By a Dynkin argument it suffices to prove the proposition for anyG = [r

0

;1)

with r

0

> 0. One easily verifies that for any� 2 R

+

we have equivalence between
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�

�1

(�!; t; n; �) � r

0

and�(�!; t; n; r
0

) � �. Therefore
R

R

+

1

G

(�

�1

(�!; t; n; �)) d� = �(�!; t;

n; r

0

) =

R

R

+

1

G

(r)�(�!; t; n; r) dr: �

Proposition 2.57 Fix (�!; t) 2 D

d

� R

+

. ThenQw

1

(�!;t;�)

1

j

R

d

nf0g

= �

3

(�!; t).

PROOF. By the previous proposition we have for anyG 2 B

d with 0 62 G that

Q

w

1

(�!;t;�)

1

(G) =

Z Z

R

+

1

G

(g(�!; t; n;�

�1

(�!; t; n; �))) d� �(dn)

=

Z Z

R

+

1

G

(g(�!; t; n; r))�(�!; t; n; r) dr�(dn)

=

Z

S

p

�R

+

1

G

(g(�!; t; n; r))�((�!; t); d(n; r))

= �

3

((�!; t); G):

�

Proposition 2.58 Let ((
;F; (F
t

)

t2R

+

; P ); X) be a solution-process to the SDE(�; �; a; u;
w;Q)

SDE. Then it is a solution-process to the martingale problem.

PROOF. ByQw

2

(�!;t;�)

2

j

R

d

nf0g

= �

2

(�!; t) etc. we have that

4

X

i=2

Z

[0;t]�E

jw(�!; t; x)j q

i

(ds; dx)

=

Z

t

0

Z

jxj (�

2

+ �

1

)((�!; t); dx) ds+

X

s2�\[0;t]

Z

jxjK((�!; t); dx)

�

Z

t

0

Z

(jxj

2

^ jxj)F ((�!; s); dx) ds+

X

s2�\[0;t]

Z

jxjK((�!; t); dx)

+ t sup

s2[0;t]

(�

2

+ �

1

)((�!; s);R

d

): (2.19)

By Definition 2.28 and the assumptions in Theorem 2.37, we have that this expression is
finite for any(�!; t) 2 D

d

� R

+

. We may therefore rewrite the solution to Equation (2.14)
asX = X

0

+B+X

c

+X

d, whereB
t

=

R

t

0

a

s

(X) ds+

P

4

i=2

R

[0;t]�E

w(X; s; x) q

i

(ds; dx),

X

c

t

:=

P

d

j=1

R

t

0

u

�j

s

(X) dW

j

s

, Xd

t

:=

P

4

i=1

R

[0;t]�E

w(X; s; x) (p

i

� q

i

)(ds; dx) for any t 2
R

+

. SinceB is predictable and of finite variation,Xc is a continuous local martingale and
X

d is a discountinuous local martingale, we have thatX is a special martingale. Denote
its integral characteristics by(B;C; �)I . From the above equations we see thatB andC
are as in Lemma 2.16 withb

t

= a

t

(X) +

P

3

i=2

R

w(X; t; x)Q

i

(dx) = a

t

(X) +

R

x (�

2

+

�

1

)((X; t); dx) = b

t

(X) andc
t

= u

t

(X)u

t

(X)

>

= c

t

(X) for anyt 2 R

+

. By the continuity
of q

1

we have that�(w

1

� (p

1

� q

1

))

t

=

R

w(X; t; x)p

1

(ftg� dx) up to indistinguishability.
Therefore, Equation (2.14) yields that we have�X

t

=

R

w(X; t; x) p(ftg � dx) for any
t 2 R

+

. Sincep is an integer-valued random measure, we have�X

t

(!) 2 G n f0g if and
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only if p(!; ft; xg) = 1 for somex with w(X; t; x) 2 G n f0g. This yields�X([0; t]�G) =
R

[0;t]�E

1

Gnf0g

(w(X; s; x)) p(ds; dx) for anyt 2 R

+

,G 2 B

d. It follows that

�([0; t]�G) =

Z

[0;t]�E

1

Gnf0g

(w(X; s; x)) q(ds; dx)

=

3

X

i=1

Z

t

0

Z

1

Gnf0g

(w

i

(X; s; x))Q

i

(dx) ds+

X

s2�\[0;t]

Z

1

Gnf0g

(w

4

(X; s; x))Q

4

(dx)

for any t 2 R

+

, G 2 B

d. From the definition of thew
i

's and by Proposition 2.57, it
follows that we have�([0; t] � G) =

R

t

0

F

s

(G) ds +

P

s2�\[0;t]

K

s

(G n f0g), whereF
t

=

(�

3

+ �

2

+ �

1

)(X; t) andK
t

= K

t

(X). Therefore,X is indeed a solution to the martingale
problem. �

Proposition 2.59 Fix (t; n) 2 R

+

�S

p. Then the mappingD d

t

�(0; R(t; n))! R, (�!; r) 7!
�(�!; t; n; r) is continuously Fréchet-differentiable with partial derivativesD

1

�(�!; t; n; r)

=

R

R(t;n)

r

D

1

�(�!; t; n; er) der 2 L (D

d

t

;R) andD
4

�(�!; t; n; r) = ��(�!; t; n; r) 2 L (R;R).

PROOF. Firstly, observe thatD d

t

is a Banach space relative to the norm�! 7! k�!k

�

t

(for
completeness, cf. Billingsley (1968), Section 18 and JS, Subsection VI.1a). Secondly, inte-
grals ofL (D

d

t

;R)-valued functions (as inD
1

� in the proposition) are meant for any single
argument�! 2 D

d

t

. This interpretation is consistent with the usual integral for Banach-
space valued functions on an interval (cf. Flett (1980), Section 1.9, in particular Exercise
4). In order to prove that the mapping(�!; r) 7! �(�!; t; n; r) is continuously differen-
tiable, it suffices to show that the partial derivativesD

1

� andD
4

� exist and that they
are continuous (cf. Lang (1993), Theorem XIII.7.1). Fixr > 0. For anyN 2 N , the
mappingD d

t

� [r; R(t; n) ^ N ] ! R, (�!; r) 7! �(�!; t; n; er) is, by assumption, continu-
ous,D

1

� exists and is also continuous. Hence (cf. Lang (1993), Theorem XIII.8.1), the
mapping�N : D

d

t

! R, �! 7!

R

[r;R(t;n)^N ]

�(�!; t; n; er) der is differentiable with derivative

D�

N

(�!) =

R

R(t;n)^N

r

D

1

�(�!; t; n; er) der. SinceD
1

�(�; t; n; er) is continuous onD d

t

and by
(2.13), dominated convergence yields thatD�

N

: D

d

t

! L (D

d

t

;R) is continuous, i.e.�N

is of classC1. Also by dominated convergence, one shows that, forN ! 1, �N (�!) con-
verges to�(�!; t; n; r) for any�! 2 D

d

t

and, moreover,D�

N converges uniformly on any ball
f�! 2 D

d

t

: k�!k

�

t

� �g to the mappingD d

t

! L (D

d

t

;R), �! 7!
R

R(t;n)

r

D

1

�(�!; t; n; er) der.
By Lang (1993), Theorem XIII.9.1, it follows that the mappingD d

t

! R, �! 7! �(�!; t; n; r)

is differentiable and its derivative is as claimed. The same dominated convergence argu-
ment as for�N shows thatD

1

� is continuous in�!. The statement concerningD
4

� simply
follows from the fundamental theorem of calculus. �

Proposition 2.60 Fix (t; n) 2 R

+

� S

p. Then for any� > 0, the mapping(�(�; t; n; 0))�1

((�;1))! R

+

, �! 7! �

�1

(�!; t; n; �) is continuously Fréchet-differentiable with derivative

D

1

�

�1

(�!; t; n; �) 2 L (D

d

t

;R); �! 7!

R

R(t;n)

�

�1

(�!;t;n;�)

D

1

�(�!; t; n; r) dr

�(�!; t; n;�

�1

(�!; t; n; �))

:

Moreover, the mappingD d

t

! R

+

, �! 7! �

�1

(�!; t; n; �) is continuous.
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PROOF. In the previous proposition we show that the mapping�! 7! �(�!; t; n; r) is continu-
ous for anyr > 0. Hence, the set(�(�; t; n; 0))�1((�;1)) = [

k2N

(�(�; t; n;

1

k

))

�1

((�;1))

is open. Define a mappingF : D

d

t

�(0; R(t; n))�R

�

+

! R byF (�!; r; �) := �(�!; t; n; r)��.
Fix � > 0. For any�! 2 (�(�; t; n; 0))

�1

((�;1)), there is ar > 0 such that
R

1

r

�(�!; t; n; er)

der > �. By continuity of� we have�(�!; t; n;��1

(�!; t; n; �)) = �, henceF (�!;��1

(�!; t;

n; �); �) = 0. Note that0 < r < �

�1

(�!; t; n; �) < R(t; n).
By the previous proposition, the mappingF is continuously Fréchet-differentiable. More-

over, for any(�!; r; �) 2 D

d

t

� (0; R(t; n)) � R

+

the derivativeD
2

F (�!; r; �) = D

4

�(�!;

t; n; r) = ��(�!; t; n; r) 6= 0 is a toplinear isomorphism in the sense of Lang (1993), p.67.
Fix (�!; �) 2 D

d

t

� R

�

+

with �! 2 (�(�; t; n; 0))

�1

((�;1)). By the implicit function theorem
(cf. Flett (1980), (3.8.1)) there is a neighbourhoodU of (�!; �) and a continuous mapping
h : U ! (0; R(t; n)) such thath(�!; �) = �

�1

(�!; t; n; �) andF (b!; h(b!; b�); b�) = 0 for
any (b!;

b

�) 2 U . Moreover,h is continuously differentiable. Since�(�; �; �; r) > 0 for
0 < r < R(t; n), we have thater > �

�1

(e!; t; n;

e

�) if and only if �(e!; t; n; e�) > er (and like-
wise for “<”). Thus,h(e!; e�) = �

�1

(e!; t; n;

e

�) for any(e!; e�) 2 U . By the implicit function
theorem (cf. Flett (1980), (3.8.1)) we have

Dh(�!; �) = �(D

2

F (�!;�

�1

(�!; t; n; �); �))

�1

�D

(1;3)

F (�!;�

�1

(�!; t; n; �); �)

Hence by the previous proposition,

D

1

�

�1

(�!; t; n; �) = D

1

h(�!; �)

= �

1

�(�!; t; n;�

�1

(�!; t; n; �))

D

1

�(�!; t; n;�

�1

(�!; t; n; �))

= �

1

�(�!; t; n;�

�1

(�!; t; n; �))

Z

R(t;n)

�

�1

(�!;t;n;�)

D

1

�(�!; t; n; er) der

as claimed. It remains to be shown that the mappingD

d

t

! R

+

, �! 7! �

�1

(�!; t; n; �) is
continuous in any�! 2 D

d

t

with �(�!; t; n; 0) � �, i.e. with��1

(�!; t; n; �) = 0. This follows
by straightforward limit arguments from the continuity of� and the positivity of�. �

Proposition 2.61 Fix (t; n) 2 R

+

� S

p as well as� > 0 and!; �! 2 D

d

t

. Then we have

j�

�1

(!; t; n; �)� �

�1

(�!; t; n; �)j

�

Z

1

0

1

f�

�1

(!+�(�!�!);t;n;�)6=0g

�(! + �(�! � !); t; n;�

�1

(! + �(�! � !); t; n; �))

�

Z

R(t;n)

�

�1

(!+�(�!�!);t;n;�)

kD

1

�(! + �(�! � !); t; n; er)k k! � �!k

�

t

der d�:

PROOF. Firstly, observe that we have equivalence between�

�1

(e!; t; n; �) 6= 0 and�(e!; t; n;
0) > �. LetG := (�(�; t; n; 0))

�1

((�;1)) and define

�

0

:= supf� 2 [0; 1] : For any�0 2 (0; �

0

), we have! + �(�! � !) 2 Gg;

�

1

:= inff� 2 [�

0

; 1] : For any�0 2 (�

1

; 1), we have! + �(�! � !) 2 Gg:
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Due to Proposition 2.60 and Lang (1993), p.337, the mappingh : [0; 1] ! R

+

, � 7!

�

�1

(! + �(�! � !); t; n; �) is continuous on[0; 1] and continuously differentiable on the
intervals(0; �

0

) and(�
1

; 1) with derivative

h

0

(�) = D

1

�

�1

(! + �(�! � !); t; n; �)(�!� !)

=

R

R(t;n)

�

�1

(!+�(�!�!);t;n;�)

D

1

�(! + �(�! � !); t; n; er)(! � �!) der

�(! + �(�! � !); t; n;�

�1

(! + �(�! � !); t; n; �))

:

In the case�
0

6= �

1

, we haveh(�
0

) = 0 = h(�

1

). This implies��1

(!; t; n; �)��

�1

(�!; t; n;

�) = h(0) � h(1) = �(h(1) � h(�

1

)) � (h(�

0

) � h(0)). By the continuity of� and the
fundamental theorem of calculus, we obtain

j�

�1

(!; t; n; �)� �

�1

(�!; t; n; �)j � lim

"!0

(jh(1� ")� g(�

1

+ ")j+ jh(�

0

� ")� h(")j)

= lim

"!0

�

�

�

�

Z

1�"

�

1

�"

h

0

(�) d�

�

�

�

+

�

�

�

Z

�

0

�"

"

h

0

(�) d�

�

�

�

�

�

Z

1

0

jh

0

(�)j1

f�

�1

(!+�(�!�!);t;n;�)6=0g

d�:

(Observe that the final estimate also holds if�

0

= 0 or �
1

= 1.) This implies the claim. �

Proposition 2.62 Fix (t; n) 2 R

+

� S

p as well as!; �! 2 D

d

t

with k!k�
t

; k�!k

�

t

� � 2 R

+

.
Then we have

Z

R

+

j�

�1

(!; t; n; �)� �

�1

(�!; t; n; �)j

2

d�

�

Z

R

+

M

8

(t; n; r) dr(k!� �!k

�

t

)

2

;

whereM
8

is chosen relative to� as in Theorem 2.37.

PROOF. By the previous proposition, the left-hand side is less than or equals the following
expression:

Z

1

0

Z

R

+

�

1

f�

�1

(!+�(�!�!);t;n;�)6=0g

�(! + �(�! � !); t; n;�

�1

(! + �(�! � !); t; n; �))

Z

R(t;n)

�

�1

(!+�(�!�!);t;n;�)

kD

1

�(! + �(�! � !); t; n; er)k der

�

2

d� d�(k! � �!k

�

t

)

2 (2.20)

By Proposition 2.56 we may replace the integration relative to� with an integration with
respect tor = �

�1

(�!; t; n; �). Therefore, (2.20) is less than or equals

(k! � �!k

�

t

)

2

Z

1

0

Z

R

+

�(! + �(�! � !); t; n; r)

�

Z

R(t;n)

r

kD

1

�(! + �(�! � !); t; n;er)k der

�(! + �(�! � !); t; n; r)

�

2

dr d�

In view of the definition ofM
8

, the claim easily follows. �
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Proposition 2.63 The Lipschitz conditions (L) and the growth conditions (G) hold for the
SDE(�; �; a; u; w;Q)SDE.

PROOF. Lipschitz and growth conditions fora andu are given in Theorem 2.37. Fixt; � 2
R

+

. Let!; �! 2 D

d with k!k�
t

; k�!k

�

t

� �. By definition we have
Z

jw(!; t; x)� w(�!; t; x)j

2

Q

1

(dx)

=

Z Z

R

+

jg(!; t; n;�

�1

(!; t; n; �))� g(�!; t; n;�

�1

(�!; t; n; �))j

2

d� �(dn)

� 2

Z Z

R

+

jg(!; t; n;�

�1

(!; t; n; �))� g(�!; t; n;�

�1

(!; t; n; �))j

2

d� �(dn)

+ 2

Z Z

R

+

jg(�!; t; n;�

�1

(!; t; n; �))� g(�!; t; n;�

�1

(�!; t; n; �))j

2

d� �(dn):

(2.21)

By the Lipschitz conditions from Theorem 2.37 and by Proposition 2.56, the first term is
dominated by

2

Z Z

R

+

L

2

4

(t; n;�

�1

(!; t; n; �)) d� �(dn)(k! � �!k

�

t

)

2

� 2

Z Z

R

+

L

2

4

(t; n; r)�(!; t; n; r) dr�(dn)(k! � �!k

�

t

)

2

: (2.22)

By the Lipschitz conditions from Theorem 2.37 and by Proposition 2.62, the second term in
(2.21) is dominated by

2

Z

L

2

3

(t; n)

Z

R

+

j�

�1

(!; t; n; �)� �

�1

(�!; t; n; �)j

2

d� �(dn)

� 2

Z

L

2

3

(t; n)

Z

R

+

M

8

(t; n; r) dr�(dn)(k! � �!k

�

t

)

2

: (2.23)

Adding the terms (2.22) and (2.23) up, one obtains
R

jw(!; t; x) � w(�!; t; x)j

2

Q

1

(dx) �

L(t) for someL : R

+

! R

+

such that
R

t

0

L(s) ds <1 for anys 2 R

+

.
Keep� 2 N fixed. For anyt 2 R

+

, defineH(t) := [0;M

�

2

([t+ 1])] (as a subset ofE
2

).
Then we haveQ

2

(t) � M

�

2

([t + 1]) andw(�!; t; x) = 0 for any(�!; t; x) 2 D

d

� [0; t]� E

2

with k�!k�
t

� �, x 2 E
2

nH(t).
By definition and Proposition 2.57, we have

R

jw(�!; t; x)jQ

2

(dx) =

R

jxj �

2

((�!; t); dx)

resp.
R

jw(�!; t; x)j

2

Q

1

(dx) =

R

jxj

2

�

3

((�!; t); dx) for any (�!; t) 2 D

d

� R

+

. Hence, the
growth conditions (G) follow from the assumptions in Theorem 2.37. �

Lemma 2.55 now follows from Proposition 2.63, Lemma 2.49 and Proposition 2.58.�

Lemma 2.64 Under the assumptions of Theorem 2.37 there is at most one solution-measure
to the martingale problem.
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PROOF. Let ((
;F; (F
t

)

t2R

+

; P ); X) and((e
; eF; (eF
t

)

t2R

+

;

e

P );

e

X) be solution-processes to
the martingale problem. By Statement 2 of Lemma 2.29 we may assume without loss of
generality that(
;F; (F

t

)

t2R

+

) and (

e


;

e

F; (

e

F

t

)

t2R

+

) both equal(D d

;D

d

; (D

d

t

)

t2R

+

) and
X =

e

X is the canonical process onDd. Let (t
k

)

k2N

be an increasing sequence inR
+

such thatt
0

= 0, � � ft

k

: k 2 Ng and t
k

" 1 for k ! 1. It suffices to prove that
P

X

t

k

=

e

P

X

t

k for anyk 2 N . We proceed by induction. We havePX

0

= � =

e

P

X

0. As-
sume that for givenk 2 N , X t

k has the same distribution underP and eP . Observe that
both ((D

d

;D

d

; (D

d

t

)

t2R

+

; P ); X

t

k+1

�

) and ((D

d

;D

d

; (D

d

t

)

t2R

+

;

e

P ); X

t

k+1

�

) are solution-
processes to the martingale problem(�\ [0; t

k

]; �;

b

b;bc;

b

F;

b

K)

M , wherebb(�!) := 1

[0;t

k+1

)

b(�!)

and similarly forbc, bF , bK. By Lemma 2.33,P (X

t

k+1

�

t

k

+s

)

s2R

+

jX

t

k

and eP (X

t

k+1

�

t

k

+s

)

s2R

+

jX

t

k

areP -
resp.eP -almost surely solution-measures to the (random) martingale problem(?; "

x

;

e

b;ec;

e

F;

0)

M with x := X

t

k

,eb
s

(�!) :=

b

b

t

k

+s

(�(X

t

k

; �!)) etc. for any�! 2 D

d , where

�(X

t

k

(!); �!)

s

:=

�

X

t

k

s

(!) for s 2 [0; t

k

)

�!

s�t

k

for s 2 [t

k

;1):

Fix ! 2 D

d . By Lemma 2.29,P (X

t

k+1

�

t

k

+s

)

s2R

+

jX

t

k

(!) and eP (X

t

k+1

�

t

k

+s

)

s2R

+

jX

t

k

(!) are forP -
resp.eP -almost all! 2 D

d solution-measures to the (random) martingale problems (�(X

0

);

Xj"

x

;

e

B(h);

e

C; e�) on the Skorohod space((D d

;D

d

; (D

d

t

)

t2R

+

; P ); X), where eB(h); eC; e�
are defined as in Statement 2 of Lemma 2.29, but relative toe

b;ec;

e

F and the truncation func-
tion h : R

d

! R

d , x 7! x1

fjxj�1g

. If we define the mappingseb(h) : D

d

� R

+

! R

d ,
eu : D

d

�R

+

! R

d�d , ew : D

d

�R

+

�E ! R

d byeb(h)
s

:=

e

b

s

+

R

(h(x)�x)

e

F

s

(dx), eu
s

(�!) :=

1

[0;t

k+1

�t

k

)

(s)u

t

k

+s

(�(X

t

k

; �!)), ew
s

(�!) := 1

[0;t

k+1

�t

k

)

(s)1

E

C

4

(x)w(�(X

t

k

; �!); t

k

+ s; x), then

we have thateB(h)
s

=

R

s

0

e

b(h)

r

dr, eC
s

=

R

s

0

eu

r

eu

>

r

dr, e�([0; s]� G) =

R

s

0

R

1

Gnf0g

(ew(r; x))

(Q

1

+Q

2

+Q

3

)(dx) dr for anys 2 R

+

,G 2 B

d (cf. the definition ofw
1

; w

2

and Proposition

2.57). By Jacod (1979), (14.80),P (X

t

k+1

�

t

k

+s

)

s2R

+

jX

t

k

(!) and eP (X

t

k+1

�

t

k

+s

)

s2R

+

jX

t

k

(!) are forP -
resp.eP -almost all! 2 D

d solution-measures to the SDE

dX

s

=

e

b(h)

s

ds+ eu

s

dW

s

+ h( ew

s

) (dp

s

� dq

s

) + ( ew

s

� h( ew

s

)) dp

s

(2.24)

in the sense of Jacod (1979), (14.79), wherep is a homogeneous Poisson random measure
on R

+

� E with compensatorq(dx; ds) = (Q

1

+ Q

2

+ Q

3

)(dx) ds. As in the proof of
Lemma 2.54, we have that a probability measure is a solution to the SDE (2.24) if and only
if it is a solution-measure to the SDE(?; "

x

;ea; eu; ew;Q)

SDE, whereea : D

d

� R

+

! R

d is
given by

ea

s

:=

e

b(h)

s

+

Z

( ew(s; x)� h( ew(s; x))Q

1

(dx)�

3

X

i=2

Z

(h( ew(s; x))Q

i

(dx):

We will now verify the conditions (I) and (L) for the coefficientsea; eu; ew, firstly to make sure
thatea is well-defined, and secondly to be able to apply Lemma 2.54. Note that, by definition

ea

s

=

e

b(h)

s

+

Z

(x� h(x)) (e�

3

)

s

(dx)�

Z

h(x) (e�

2

+ e�

1

)

s

(dx)

=

e

b

s

�

Z

x (e�

1

+ e�

2

)

s

(dx);
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where thee�
i

are defined (parallel toeb;ec; eF ) by e�
i

(�!; s; dx) := 1

[0;t

k+1

�t

k

)

(s)�

i

((�(X

t

k

; �!);

t

k

+s); x). Now observe thatk�(X t

k

; �!)��(X

t

k

; �!)k

�

t

k

+s

� k�!��!k

�

s

andk�(X t

k

; �!)k

�

t

k

+s

�

kX

t

k

k

�

t

k

+ k�!k

�

s

for any s 2 R

+

, �!; �! 2 D

d . Hence, the Lipschitz and growth con-
ditions (L), (G) and therefore also the implied integrability conditions (I) for the SDE
(?; "

x

;ea; eu; ew;Q)

SDE with

ea

s

(�!) = 1

[0;t

k+1

�t

k

)

(s)

�

b

t

k

+s

(�(X

t

k

; �!))�

Z

x (e�

1

+ e�

2

)((�(X

t

k

; �!); t

k

+ s); dx)

�

etc. follow as in Proposition 2.63 from the conditions in Theorem 2.37. By Lemma 2.54

we can now conclude thatP (X

t

k+1

�

t

k

+s

)

s2R

+

jX

t

k

(!) =

e

P

(X

t

k+1

�

t

k

+s

)

s2R

+

jX

t

k

(!) for P j
�(X

t

k

)

=

e

P j

�(X

t

k

)

-almost all! 2 D

d . Thus,PX

t

k+1

�

=

e

P

X

t

k+1

�

, i.e. P j
D

d

t

k+1

�

=

e

P j

D

d

t

k+1

�

. By

Remark 3 in Section 2.4 we have thatK((X(!); t

k+1

); �) is a version ofP�X

t

k+1

jD

d

t

k+1

�

(!)

for P j
D

d

t

k+1

�

-almost all! 2 D

d and likewise foreP . This impliesPX

t

k

=

e

P

X

t

k , and hence

we are done. �

Theorem 2.37 now follows from the Lemmas 2.55 and 2.64. �

PROOF OFCOROLLARY 2.43. We will not use Theorem 2.37 for the proof of Corollary
2.43 since, in the case of unbounded jump intensity, the jump measureF

t

must have a
continuous density around 0. For PII, however, this restriction is not necessary.

By Lemma 2.29, it suffices to show that the martingale problems (�(X

0

); Xj�;B(h); C;

�) on (D d

;D

d

; (D

d

t

)

t2R

+

) has a unique solution, whereB(h); C; � are defined in that state-
ment. By JS, III.2.16 this is indeed the case. Moreover, we know from JS, II.4.15 and JS,
II.4.19 that for� = "

0

, any solution-processX is a process with independent increments,
which, in addition, has stationary increments if and only if the coefficients of themartingale
problem are constant (i.e. they do not depend ont, either). �

PROOF OF THE EXAMPLES. 1. Chooseu = 0, � := "

�1

+ "

1

on S0, �
1

:= �

2

:= 0.
Moreover, defineg : D

2

� R

+

� S

0

� R

+

! R

2 and� : D

2

� R

+

� S

0

� R

+

! R

+

by
g(�!; t; n; r) = (�nr; jrj) and�(�!; t; n; r) = h(�!

2

t

)'(r), where�!2 denotes the second com-
ponent of�! (not �! squared). One easily verifies that the measure�

3

((�!; t); �) in Theorem
2.37 indeed equalsF ((�!; t); �) for any(�!; t) 2 D

2

� R

+

. Observe that
Z

jx

1

jF ((�!; t); d(x

1

; x

2

)) =

Z

�jxjh(�!

2

t

)

1

jxj

e

�jxj

dx � 2�(� + k�!k

�

t

)

and
Z

jxj

2

F ((�!; t); d(x

1

; x

2

)) =

Z

(�

2

x

2

+ x

2

)h(�!

2

t

)

1

jxj

e

�jxj

dx � (1 + �

2

)(�+ k�!k

�

t

)

for any (�!; t) 2 D

2

� R

+

, where :=

R

jxje

�jxj

dx < 1. From these inequalities
the growth conditions easily follow. Now letR(t; n) := 1 for any (t; n) 2 R

+

� S

0.
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We haveD
1

�(�!; t; n; r)(!) =

1

r

e

�r

h

0

(�!

2

t

)! and hencekD
1

�(�!; t; n; r)k �

1

r

e

�r for any
(�!; t; n; r) 2 D

2

� R

+

� S

0

� R

+

and any! 2 D

2 . Since
R

1

r

1

er

e

�er

der < 1, the reg-
ularity conditions on� hold. It is straightforward to verify the Lipschitz conditions for
b. Moreover, we may takeL

3

(t; n) := 1 + � andL
4

(t; n; r) := 0 for any (t; n; r) 2

R

+

� S

0

� R

+

. It remains to show the integrability conditions involvingL
3

in Theorem
2.37. Since�(�!; s; n; r) � �

2

1

r

e

�r andkD
1

�(�!; s; n; r)k �

1

r

e

�r for any (�!; s; n; r) ), it
suffices to prove that

R

1

0

re

r

(

R

1

r

1

er

e

�er

der)

2

dr < 1. We denote the integrand by�(r). By
application of l' Hospital's rule (cf. Heuser (1990a), (50.1)), it follows that�(r) converges to
0 for r ! 0. Therefore�(r) is bounded on[0; 1], and we have

R

1

0

�(r) dr < 1. Moreover,
R

1

r

re

�r

dr <1 for anyr � 1. By Theorem 2.37 we can now conclude that the martingale
problem has a unique solution-measure.

2. All definitions will be as in the previous example, except forg and�, which will now
be given byg(�!; t; n; r) := (�nrh(�!

2

t

); jrjh(�!

2

t

)) and�(�!; t; n; r) := '(r). The bulk of the
proof follows as above, but note that this time� does not depend on�! and henceD

1

� = 0.
ChooseL

4

(t; n; r) := (1 + �)r for (t; n; r) 2 R

+

� S

0

� R

+

. The integrability condition
containingL

4

in Theorem 2.37 now follows from
R

1

0

r

2

1

r

e

�r

dr =

R

1

0

re

�r

dr <1. �

2.9 Martingale Representation

It is well-known that any local martingale can be written as a stochastic integral with respect
to a Wiener process if the latter generates the underlying filtration. The situation is more
complicated for arbitrary semimartingales instead of Brownian motion. Not only does one
need two integrals instead of one (the first one with respect to the continuous localmartin-
gale part (as in the Brownian case) and the second with respect to the compensated measure
of jumps of the semimartingale), but this reprensetation also holds only under conditions
connected with martingale problems (cf. JS, Theorem III.4.29). A sufficient condition is
given in the following

Theorem 2.65 Let (
;F; (F
t

)

t2R

+

; P ) be a stochastic basis withF = F

1�

, and letX be
a Rd -valued special semimartingale on that space. Assume that(F

t

)

t2R

+

is the canonical
filtration of X or its P -completion. Moreover, suppose thatX is a solution-process to a
martingale problem as in Definition 2.28, which has a unique solution-measure (e.g. by
Theorem 2.37). Then for any local martingaleM there is a processH 2 L

2

loc

(X

c

) and a
mappingW 2 G

loc

(�

X

) such that

M =M

0

+

Z

�

0

H

s

� dX

c

s

+

Z

[0;�]�R

d

W (s; x) (�

X

� �)(ds; dx)

(for notation cf. Appendix A). Moreover,M is an extended Grigelionis process. In partic-
ular, all local martingales have the representation property relative toX (cf. Appendix A,
Definition A.9).
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Corollary 2.66 Under the conditions of the preceding theorem we have that for anyT 2 R

+

and anyF
T

-measurable, integrable random variableY , there areH andW as in Theorem
2.65 such that for anyt 2 [0; T ] we have

E(Y jF

t

) = E(Y jF

0

) +

Z

t

0

H

s

� dX

c

s

+

Z

[0;t]�R

d

W (s; x) (�

X

� �)(ds; dx):

Proofs

PROOF OF THEOREM 2.65. By assumption,((
;F; (F
t

)

t2R

+

; P ); X) is the solution-
process to a martingale problem(�; �; b; c; F;K)

M having a unique solution-measure. By
Lemma 2.29,P is a solution to the martingale problems (�(X

0

); Xj(P j

�(X

0

)

);B(h); C; �)

relative to(
;F; (F
t

)

t2R

+

; P ) andX, whereB(h); C; � are defined in that lemma. Assume
that eP is another solution to this martingale problem. Again by Lemma 2.29, Statement 1
bothPX and ePX are solution-measures to the martingale problem(�; �; b; c; F;K)

M , and
hencePX

=

e

P

X . This implies thatP; eP coincide on the�-field �(X) generated byX.
SinceF equals�(X) or itsP -completion, we have thatP =

e

P . From JS, III.4.29 we can
now conclude that any local martingale has the representation property relative toX, which
is to prove. By JS, III.4.7 and Proposition 2.24,M is an extended Grigelionis process.�

PROOF OFCOROLLARY 2.66. The processM defined byM
t

:= E(Y jF

t

) for anyt 2 R

+

is a martingale. �



Chapter 3

Markets, Strategies, Prices

In this chapter we generalize the approach presented in Section 1.2 to a continuous-time
setting. One should note that discrete-time models are always regarded here asa special
case of this more general framework. Contrary to the introduction, we attach importance
to mathematical rigour. We rely heavily on the notions of Chapter 2 (mainly Sections 2.2
– 2.4). The proofs are again located at the end of each section. For a discussion of the
economical motivation, application and limitation of our approach we refer the reader to
Section 1.2.

3.1 The Market Model

As in Subsection 1.2.1, we confine ourselves here to frictionless markets with afinite
number of traded securities. We work mathematically with a filtered probability space
(
;F; (F

t

)

t2R

+

; P ) in the sense of Section 2.2.
 here denotes the set of possible states
of the market in a more or less abstract sense. The�-field F

t

represents the information
that is available to traders up to timet. It is assumed to be the same for any investor. We
treat the market as a random system governed by some objective probability measureP ,
which is neither subject to personal beliefs nor usually a risk-neutral measurefor contingent
claim valuation. We assume that the probability of various events is, in principle, known to
the investors, either intuitively by market experience or by statistical observation. As in the
introduction, we consider securities termed0; : : : ; n, which are modelled by their respective
price processesS0

; : : : ; S

n. As a numeraireby which all other securities are discounted,
Security0 can be interpreted as the benchmark for risklessness. We assume that its value
S

0

t

is positive for anyt 2 R

+

. By Zi with Z

i

t

:= S

i

t

=S

0

t

for any t 2 R

+

we denote the
discounted price processof asseti. TheRn+1 -valued stochastic processZ = (Z

0

; : : : ; Z

n

)

on the given filtered probability space is often calledmarket. For the rest of this chapter we
make the following weak

Assumption. TheRn+1 -valued stochastic processZ = (Z

0

; : : : Z

n

) is an extended Grige-
lionis process with extended characteristics(�; P

Z

0

; b; c; F;K)

E.

90
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Using the usual embedding (cf. Appendix A) one may treat discrete-time settingsin a con-
tinuous-time framework.

Definition 3.1 Let � be a discrete set. We call the marketZ = (Z

0

; : : : ; Z

n

) �-discreteif
t 7! F

t

is constant andt 7! Z

t

is P -almost surely constant on the open intervals between
neighbouring points of� [ f0;1g.

As usual, trading means picking a(n + 1)-dimensional, predictable stochastic process
', termed thetrading strategy. 'i

t

denotes the number of securitiesi you hold at timet.
In continuous-time models an appropriate choice of the set of admitted trading strategies is
not easy. If one allows too many portfolios, then even very decent models contain arbitrage
opportunities, e.g. modified versions of the doubling strategy. If one restricts the set too
strictly, one may lose a number of perfect hedging strategies of the Black-Scholes type. We
do not follow the classical choice proposed in Harrison & Pliska (1981) for two reasons.
Firstly, the value process of the portfolio is assumed to be bounded from below, which e.g.
in a discrete-time stock price model with normal log-returns may prohibit even the short-
sale of a single stock. In addition, the set of admissible strategies depends in a sophisticated
way on some equivalent martingale measure, which is not very intuitive from an economic
point of view. Instead, we introduce two kinds of portfolios for the market(Z

0

; : : : ; Z

n

).

Definition 3.2 1. We call any predictableRn+1 -valued stochastic process' = ('

0

; : : : ;

'

n

) a (trading) strategyor portfolio. The set of all strategies is denotedA.

2. We call a strategy' 2 A feasibleif it is of the form

' =  

0

1

[T

0

;T

1

]

+

m�1

X

i=1

 

i

1

]T

i

;T

i+1

]

;

wherem 2 N , 0 = T

0

� T

1

� : : : � T

m

are stopping times and 
i

is a bounded
F

T

i

-measurable random variable fori = 0; : : : ; m. The set of all feasible strategies is
denoted byS.

We think that “real” trading resembles feasible portfolios. Nevertheless, we often consider
general predictable strategies as limiting cases of feasible ones. As inthe introduction, we
distinguish between different kinds of traders. Aspeculatoris free to choose his portfo-
lio among the whole ofA (resp.S) whereas ahedgeris confined to some subsetM � A

(resp.M\S � S). We consider usually only fixed positions in certain securities as in Sub-
section 1.2.1, or alternatively, short-sale restrictions. Both situations correspond to convexly
restricted sets of strategies in the sense of the following

Definition 3.3 LetM � A be non-empty. We say thatM is convexly restrictedif for some
q 2 N there are(P
 Bn+1

)-measurable mappingsg1; : : : ; gq : 
 � R

+

� R

n+1

! R such
that for somep 2 f0; 1; : : : ; qg the following conditions hold.



92 Chapter 3. Markets, Strategies, Prices

1. For any(!; t) 2 
 � R

+

the functiongj(!; t) : R

n+1

! R is convex for anyj 2
f1; : : : ; pg and affine for anyj 2 fp+ 1; : : : ; qg (cf. e.g. Rockafellar (1970)).

2. For any(!; t) 2 
� R

+

we havef 2 R

n+1

: g

j

( ) < 0 for anyj 2 f1; : : : ; pgg 6=
?.

3. M = f' 2 A : For anyt 2 R

+

we havegj
t

('

t

) � 0 for j 2 f1; : : : ; pg andgj
t

('

t

) = 0

for j 2 fp+ 1; : : : ; qgg.

We call the constraints “g1; : : : ; gp � 0, gp+1

; : : : g

q

= 0” fixedif the mappings(!; t; x) 7!
g

j

t

(x)(!) := g

j

(!; t; x) do not depend on(!; t).

Example. Let J � f0; : : : ; ng and j 2 R for any j 2 J . Then the setM := f' 2 A :

'

j

(!; t) =  

j for anyj 2 J , (!; t) 2 
�R

+

g is convexly restricted with fixed constraints.
This is the state of affairs for the hedger in the introduction.

Analogously to Section 1.2, we now define the corresponding gain processes.

Definition 3.4 Let' 2 A be locally bounded (cf. Lemma A.1 in the appendix). The process
(G(')

t

)

t2R

+

defined byG(')
t

:=

R

t

0

'

s

� dZ

s

for any t 2 R

+

is calleddiscounted gain
processof '.

Remark. By Lemma 2.22,G(') is an extended Grigelionis process.

In the continuous-time setting arbitrage is defined as in the introduction, but relative to
feasible portfolios.

Definition 3.5 We call the trading strategy' 2 S arbitrage if there is aT 2 R

+

such that
G

T

(') � 0 P -almost surely andP (G
T

(') > 0) > 0. If there exists such a strategy, we say
that the market allows arbitrage.

Lemma 3.6 We have equivalence between

1. The market allows arbitrage.

2. There are bounded stopping timesT
1

� T

2

and a bounded,F
T

1

-measurable,Rn+1 -
valued random variable such that � (Z

T

2

� Z

T

1

) � 0 P -almost surely andP ( �
(Z

T

2

� Z

T

1

) > 0) > 0. (If the market is�-discrete, one can even chooseT
1

= s,
T

2

= t for two neighbouring pointss; t in � [ f0g.)

The following lemma expresses the well-known fact that the existence of anequivalent
martingale measure (EMM)implies that the market allows no arbitrage.

Lemma 3.7 If for any T 2 R

+

there is a probability measureP � on F
T

such thatP �

�

P j

F

T

andZT (or at leastZT

�Z

0

) is aP �-martingale, then the market allows no arbitrage.

Note that no equivalence is claimed in the previous lemma. Observe also thatAmay contain
“arbitrage,” but that we do not consider it as such as long as it is not feasible.
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Proofs

PROOF OF LEMMA 3.6. 1 ) 2: Let ' =  

0

1

[0;T

1

]

+

P

m�1

i=1

 

i

1

]T

i

;T

i+1

]

2 S andT 2 R

+

with G
T

(') � 0 andP (G
T

(') > 0) > 0. W.l.o.g.,T
m

� T . Moreover, letk 2 f1; : : : ; mg
be maximal with the property thatP (G

T

k�1

(') < 0) > 0 or G
T

k�1

(') � 0 P -almost
surely. In the second case we have 

k�1

� (Z

T

k

� Z

T

k�1

) = G

T

k

(')� G

T

k�1

(') � G

T

k

(')

which is, by assumption, non-negative and positive with positive probability. In the case
P (G

T

k�1

(') < 0) > 0 defineA := fG

T

k�1

(') < 0g 2 F

T

k�1

. Then we have thatP (A) > 0

and(1
A

 

k�1

)(Z

T

k

� Z

T

k�1

) = 1

A

(G

T

k

(') � G

T

k�1

(')) is strictly positive onA. Now we
consider the case that the market is�-discrete. Since any term1

]T

i

;T

i+1

]

in the definition of
' can be written as

P

l2N

1

]T

i

_t

l

;T

l+1

^t

l+1

]

where� [ f0;1g = ft

0

; t

1

; : : :g, it follows from
the above proof that , T

1

, T
2

in Statement 2 can be chosen such thatt

l

� T

1

� T

2

� t

l+1

for somel 2 N . If we set e :=  1

fT

1

<t

l+1

g\fT

2

<t

l+1

g

C , then we havee is F
t

l+1

�

= F

t

l

-

measurable ande � (Z
t

l+1

� Z

t

l

) =  � (Z

T

2

� Z

T

1

).
2) 1: The strategy � 1

]T

1

;T

2

]

is an arbitrage. �

PROOF OF LEMMA 3.7. Assume that there exist ; T
1

; T

2

as in Statement 2 of Lemma 3.6.
Moreover, letT 2 R

+

with T � T

2

. By Doob's stopping theorem (cf. JS, I.1.39) we have
E

�

( � (Z

T

2

� Z

T

1

)) =  � E

�

(E

�

(Z

T

2

� Z

0

jF

T

1

) � (Z

T

1

� Z

0

)) = 0, whereE� denotes
expectation relative toP �. Since � (Z

T

2

� Z

T

1

) � 0 P - and henceP �-almost surely,
this implies � (Z

T

2

� Z

T

1

) = 0 P

�- and henceP -almost surely, in contradiction to the
assumption. �

3.2 Optimal Strategies

As in Subsection 1.2.2, we define optimal strategies in terms of local maximization of ex-
pected utility. We begin by defining utility functions as in the introduction.

Definition 3.8 u : R ! R is calledutility function if

1. u is three times continuously differentiable.

2. The derivativesu0; u00; u000 are bounded andlim
x!1

u

0

(x) = 0.

3. u(0) = 0, u0(0) = 1

4. u0(x) > 0 for anyx 2 R

5. u00(x) < 0 for anyx 2 R

� := �u

00

(0) is calledrisk aversion.

Alhough all we do can be done with any utility function in the sense of the previous defini-
tion, we usually focus on standard utility functions.
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Definition 3.9 For any� 2 R

�

+

the functionu
�

: R ! R; x 7!

1

�

(1 + �x�

p

1 + �

2

x

2

) is
calledstandard utility functionwith risk aversion�.

Remarks.

1. For any� 2 R

�

+

, x 2 R we have

u

0

�

(x) = 1�

�x

p

1 + �

2

x

2

; u

00

�

(x) =

��

(1 + �

2

x

2

)

3

2

;

u

0

�

(x) = u

0

1

(�x):

In particular,u
�

is a utility function.

2. One may wonder why we claimlim
x!�1

u

0

(x) to be finite, which rules out utility
functions as e.g.u(x) := 1 � e

�x. One reason is that we would otherwise have
to impose strong moment conditions in order to obtain hedging strategies, derivative
prices etc. Such a limitation of the set of models under consideration contradicts our
intentions. Secondly, observe that the expected utility of the gainE(u(�G

t

('))) in
Subsection 1.2.2 has an easy interpretation, especially for standard utility functions.
For small� it is close to the expected gainE(�G

t

(')), whereas for large risk aversion
it approximates twice the expected lossE(0^�G

t

(')). For arbitrary� it is something
in between.

For the rest of this section, the utility functionu and its risk aversion� is fixed (unless
otherwise stated). In Chapter 1 we define optimal strategies in terms of thelocal gains
�G

t

over one period. Since there is no shortest possible time-span in a continuous-time
framework, a transfer of this approach is not evident. However, by means of a limiting
argument, we will be able to define a natural counterpart. To begin with, we define the
expected utility of a strategy for arbitrary (short) time intervals.

Definition 3.10 For any' 2 S, t; t0 2 R

+

with t < t

0 we define theexpected utility of' in
the interval[t; t0] by

U('; t; t

0

) :=

�

E(u(G

t

0

(')�G

t�

('))) if E(ju(G
t

0

(')�G

t�

('))j) <1

�1 else:

(We setG
0�

(') := 0.)

The limiting behaviour of the expected utility for small time intervals willlater be expressed
in terms of local utility in the sense of the following

Definition 3.11 For any 2 R

n+1 , t 2 R

+

we call theR2 -valued random variable(�
t

( );



t

( )) local utility of  in t, where

�

t

( ) :=

Z

u( � x)K

t

(dx)



t

( ) :=  � b

t

�

1

2

� 

>

c

t

 +

Z

(u( � x)�  � x)F

t

(dx):
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Remarks.

1. Note that�
t

( ) = E(u( ��Z

t

)jF

t�

) P -almost surely by Remark 3 in Section 2.4.

2. �
t

( ) and
t

( ) do not depend on 0 becauseZ0 is constant.

The following lemma shows that the local utility is well-defined and unique outside some
null sets.

Lemma 3.12 Let' 2 A.

1. There exists a version(�
t

('

t

); 

t

('

t

))

t2R

+

of the local utility of'
t

in t for anyt 2 R

+

.

2. Let (�
t

('

t

); 

t

('

t

))

t2R

+

and (e�
t

('

t

); e

t

('

t

))

t2R

+

be two versions of the local utility
of'

t

in t for anyt 2 R

+

. Then we have

(a) �

t

('

t

(!))(!) =

e

�

t

('

t

(!))(!) up to indistinguishability.

(b) There is some(P 
 �)-null setN 2 P such that
t

('

t

(!))(!) = e

t

('

t

(!))(!)

for any(!; t) 2 NC .

3. Up to an evanescent set for� and a(P 
 �)-null set for, Definition 3.11 does not
depend on the choice of� in the extended characteristics ofX.

For Theorem 3.14 below, we need the following integrability conditions.

Definition 3.13 1. We say that the marketZ = (Z

0

; : : : ; Z

n

) meetsregularity condition
(RC 1) if there is a" > 0 such that for anyt 2 R

+

we have

E

�

Z

t

0

jb

s

j

1+"

ds

�

<1;

n

X

i;j=0

E

�

Z

t

0

jc

ij

s

j

1+"

ds

�

<1;

E

�

Z

t

0

�

Z

(jxj

2

^ jxj)F

s

(dx)

�

1+"

ds

�

<1;

E

�

�

Z

jxjK

t

(dx)

�

1+"

�

<1:

2. We say that the market meetsregularity condition (RC 1' )if it meets (RC 1) or if it
is�-discrete.

The following theorem states that for small time intervals, the expectedutility of a feasible
strategy can be approximated by an expression that depends only on the local utility.

Theorem 3.14 Assume that regularity condition (RC 1) holds. Let' 2 S. For anyt 2 R

+

we have
U('; t; t

0

) = E(�

t

('

t

)) + o(1);
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whereo(1)! 0 for t0 # t. Moreover, for�-almost allt 2 R

+

n� we have

U('; t; t

0

) = E

�

Z

t

0

t



s

('

s

) ds

�

+ o(t

0

� t);

whereo(t
0

�t)

t

0

�t

! 0 for t0 # t.

Remarks.

1. Definition 3.10 can be extended to abitrary locally bounded strategies. Then the pre-
vious theorem holds for any bounded' 2 A.

2. If Z (but not necessarily the market) is�-discrete, then we even haveU('; t; t0) =

E(�

t

('

t

)) if t0 � t is sufficiently small.

In discrete-time models we can do without the regularity condition (RC 1) if weconsider a
slightly different notion of expected utility.

Definition 3.15 For any' 2 S, t; t0 2 R

+

with t < t

0, we define theconditional expected
utility of ' in the interval[t; t0] by

e

U('; t; t

0

) :=

�

E(u(G

t

0

(')�G

t�

('))jF

t�

) if E(ju(G
t

0

(')�G

t�

('))jjF

t�

) <1

�1 else:

Lemma 3.16 Assume that the market is�-discrete. Let' 2 S, t 2 R

+

. Then we have

e

U('; t; t

0

) = �

t

('

t

)

if t0 � t is small enough.

As in the discrete-time setting in the introduction, we want to call a strategy ' optimal
(relative to a given set of strategiesM � A and a utility functionu) if it maximizes the
expected utility for very short time intervals, where herevery shortis to be understood in a
limiting sense. By Theorem 3.14 (or Lemma 3.16) we know that, up to a small erroro(1)

resp.o(t0 � t), the expected utility depends monotonically on�

t

('

t

), 
t

('

t

). Therefore, it
makes sense to call a strategy optimal if its local utility is maximalcompared to all strategies
inM.

Definition 3.17 LetM � A. We call a strategy' 2 M u-optimal forM if the following
conditions hold:

1. P -almost surely and for anyt 2 R

+

we have

�

t

('

t

) � �

t

(e'

t

) for any e' 2M:

2. Outside some(P 
 �)-null setN 2 P we have



t

('

t

) � 

t

(e'

t

) for any e' 2M:
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A u-optimal strategy is generally not feasible. Hence, from a practical point ofview it is
only useful as a limiting object, i.e. if we can approximate the optimal portfolioand its local
utility by feasible strategies.

Definition 3.18 Let ' 2 A and('m)
m2N

a sequence inS. We call('m)
m2N

anapproxi-
mating sequencefor ' 2 A if

1. P -almost surely we have

�

t

('

m

t

)

m!1

�! �

t

('

t

) for anyt 2 R

+

:

2. Outside some(P 
 �)-null setN 2 P we have



t

('

m

t

)

m!1

�! 

t

('

t

):

3. Outside some(P 
 (�+

P

s2�

"

s

))-null set we have

'

m

m!1

�! ':

Definition 3.19 A setM � A is calledregular if, for any' 2 M, there exists an approxi-
mating sequence('m)

m2N

inS \M.

The following lemma states that the setA of all strategies, which corresponds to the specu-
lator, is regular.

Lemma 3.20 For any' 2 A there exists an approximating sequence('

m

)

m2N

. If ' is
locally bounded, then the approximating sequence can be chosen such thatP -almost surely
we haveG('m)

m!1

�! G(') uniformly on any interval[0; t].

Corollary 3.21 LetM � A be convexly restricted with fixed constraints. ThenM is regular.
More precisely, for' 2M the sequence('m)

m2N

in Lemma 3.20 can be chosen inS\M.

The following theorem gives necessary and sufficient conditions foru-optimal strategies,
which permits explicit calculations. Its corollary focuses on the hedger from Subsection
1.2.2 and represents a continuous-time counterpart of Lemma 1.2.

Theorem 3.22 LetM � A be convexly restricted by constraintsg1; : : : ; gp � 0, gp+1

; : : : ;

g

q

= 0 such that the mappingsgj(!; t) : R

n+1

! R are differentiable for any(!; t) 2

� R

+

, j 2 f1; : : : ; qg. Moreover, let' 2M. Then' is u-optimal forM if and only if the
following two conditions hold.

1. P -almost surely and for anyt 2 R

+

there exist�
1

; : : : ; �

q

2 R with �
j

� 0 and
�

j

g

j

('

t

) = 0 for j = 1; : : : ; p such that

Z

x

i

u

0

('

t

� x)K

t

(dx)�

q

X

j=1

�

j

D

i

g

j

('

t

) = 0 for i = 0; : : : ; n:
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2. Outside some(P 
 �)-null setN 2 P, there exist�
1

; : : : ; �

q

2 R with �
j

� 0 and
�

j

g

j

('

t

) = 0 for j = 1; : : : ; p such that

b

i

t

� �c

i�

t

� '

t

+

Z

x

i

(u

0

('

t

� x)� 1)F

t

(dx)�

q

X

j=1

�

j

D

i

g

j

('

t

) = 0 for i = 0; : : : ; n:

Corollary 3.23 LetM = f' 2 A : '

i

t

=  

i for any i 2 fk; : : : ; ng, t 2 R

+

g for some
k 2 f0; : : : ; n + 1g and some k; : : : ;  n 2 R. Moreover, let' 2 M. Then' is u-optimal
forM if and only if the following two conditions hold.

1. P -almost surely and for anyt 2 R

+

we have
Z

x

i

u

0

('

t

� x)K

t

(dx) = 0 for i = 1; : : : ; k � 1:

2. Outside some(P 
 �)-null setN 2 P we have

b

i

t

� �c

i�

t

� '

t

+

Z

x

i

(u

0

('

t

� x)� 1)F

t

(dx) = 0 for i = 1; : : : ; k � 1:

Remark. The preceding corollary also holds for predictable processes 

k

; : : : ;  

n instead
of fixed real numbers.

Especially in markets with redundant securities, optimal strategies are far from unique.
However, the following result shows that they do not differ by much as far as their financial
gains are concerned.

Lemma 3.24 LetM � A as in Theorem 3.22. Moreover let'; e' 2M be locally bounded
u-optimal strategies forM. Then we haveG(') = G(e') up to indistinguishability.

So far we have not shown that optimal strategies actually exist. Sufficientconditions are
given below.

Definition 3.25 We say that the marketZ = (Z

0

; : : : ; Z

n

) meetsregularity condition (RC
2) if the following two conditions hold.

1. P -almost surely and for anyt 2 R

+

, there exists a 2 R

n+1 such that
Z

x

i

u

0

( � x)K

t

(dx) = 0 for i = 0; : : : ; n:

2. Outside some(P 
 �)-null setN 2 P, there exists a 2 R

n+1 such that

b

i

t

� �c

i�

t

�  +

Z

x

i

(u

0

( � x)� 1)F

t

(dx) = 0 for i = 0; : : : ; n:



3.2. Optimal Strategies 99

Remark. Althoughu and� appear in the above definition, condition (RC 2) does not depend
on the chosen value of� if one works with standard utility functions.

Theorem 3.26 Assume that regularity condition (RC 2) holds. LetM � A be as in Theorem
3.22 with the additional condition that allgj are affine functions. Then there exists au-
optimal strategy' 2M forM.

Corollary 3.27 We have equivalence between

1. The market meets regularity condition (RC 2).

2. A contains au-optimal strategy forA. In other words, there exists a strategy that is
u-optimal for the speculator.

Let us turn to discrete markets as in the introduction.

Remark. If the market isN� -discrete, then Lemma 2.20 yields that

�

t

( ) =

Z

u( � x)P

�Z

t

jF

t�1

= E

�

u

�

n

X

i=1

 

i

�Z

i

t

�

�

�

�

F

t�1

�

P -almost surely.

Hence, maximization of 7! �

t

( ) is exactly what is done in Subsection 1.2.2. Moreover,
we have

Z

x

i

u

0

('

t

� x)K

t

(dx) = E

�

u

0

�

n

X

j=1

'

j

t

�Z

j

t

�

�Z

i

t

�

�

�

F

t�1

�

:

Therefore the conditions in Corollary 3.23 and Lemma 1.2 coincide as well.

One may wonder whether regularity condition (RC 2) means a serious restriction of
the class of markets under consideration. For practical purposes this is not the case. The
following theorem shows that in discrete markets (RC 2) is equivalent to the absence of
arbitrage.

Theorem 3.28 For �-discrete markets we have equivalence between

1. For anyT 2 R

+

there is a probability measureP � onF
T

such thatP �

� P j

F

T

and
(Z � Z

0

)

T is aP �-local martingale.

2. The market meets regularity condition (RC 2).

3. P -almost surely we have for anyt 2 � and any 2 R

n+1 the implication

K

t

(�H

 

) = 0) K

t

(H

 

) = 0;

whereH 

:= fx 2 R

n+1

:  � x > 0g.

4. The market allows no arbitrage.
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Remark. In particular, we have 1') 2, where

1' . For anyT 2 R

+

there is a probability measureP � onF
T

such thatP �

� P j

F

T

and
Z

T is aP �-martingale.

Unfortunately, we doubt that any of the above inclusions holds for continuous-time markets
as well.

We need the following results for Section 3.4.

Lemma 3.29 1. For any' 2 A, � > 0 we have

' 2 A is u
�

-optimal forA, �' 2 A is u
1

-optimal forA:

2. Let�
1

; : : : ; �

p

> 0 and� = (

P

p

j=1

�

�1

j

)

�1. If '(j)

2 A is u
�

j

-optimal forA for any
j 2 f1; : : : ; pg, then the sum

P

p

j=1

'

(j) is u
�

-optimal forA.

3. If '(1)

; : : : ; '

(p) are as in the second statement and additionally
P

p

j=1

'

(j);i

= 0 for
i = l + 1; : : : ; n, then there exists au

1

-optimal strategy' 2 A with '

i

= 0 for
i = l + 1; : : : ; n.

4. If '(1)

; : : : ; '

(p) are u-optimal strategies forA with
P

p

j=1

'

(j);i

= 0 for i = l + 1,
: : : ; n, then there exists au-optimal strategy' 2 A with 'i = 0 for i = l + 1; : : : ; n.

Proofs

PROOF OF LEMMA 3.12. 1. We have to show that the integrals exist. By Lemma 2.18,
there are versions ofF;K such that on
� R

+

we have identically
R

jxjK

t

(dx) <1 and
R

(jxj

2

^ jxj)F

t

(dx) < 1. Sinceju( � x)j � sup

y2R

ju

0

(y)jj � xj � sup

y2R

ju

0

(y)jj jjxj

for any  ; x 2 R

n+1 we have
R

ju( � x)jK

t

(dx) � sup

y2R

ju

0

(y)jj j

R

jxjK

t

(dx) <

1. For any ; x 2 R

n+1 , there exist#
1

; #

2

2 [0; 1] such thatu( � x) �  � x =

 � x(u

0

(#

1

 � x) � 1) = ( � x)

2

#

1

u

00

(#

1

#

2

 � x). Therefore,ju( � x) �  � xj �

(jxj

2

^ jxj)(j j

2

sup

y2R

ju

00

(y)j + j j sup

y2R

ju

0

(y)j). Since
R

(jxj

2

^ jxj)F

t

(dx) < 1,
it follows that

R

ju( � x)�  � xjF

t

(dx) <1 as well.
2. and 3. This follows immediately from Statement 2 in Lemma 2.18. �

PROOF OFTHEOREM 3.14. We prove the theorem for any bounded' 2 A. Fix t 2 R

+

.
For the proof of the first statement, observe that

u(G

t

0

(')�G

t�

(')) = u

�

'

t

��Z

t

+

Z

t

0

0

1

[0;t]

C(s)'

s

� dZ

s

�

:

Since the mean value theorem implies

�

�

�

u

�

'

t

��Z

t

+

Z

t

0

0

1

[0;t]

C
(s)'

s

� dZ

s

�

� u('

t

��Z

t

)

�

�

�

� sup

x2R

ju

0

(x)j

�

�

�

Z

t

0

0

1

[0;t]

C
(s)'

s

� dZ

s

�

�

�

;
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it suffices to prove thatE(u('
t

� �Z

t

)) = E(�

t

('

t

)) andE(j
R

t

0

0

1

[0;t]

C (s)'

s

� dZ

s

j) !

0 for t0 ! t. The assumptionE((
R

jxjK

t

(dx))

1+"

) < 1 implies that
R

jxj �(ftg �

dx) and hence
R

jxj�

Z

(ftg � dx) is integrable, where�Z, � denote the jump measure
of Z and its compensator. Thereforeju('

t

� �Z

t

)j =

R

ju('

t

� x)j�

Z

(ftg � dx) �

sup

x2R

+

ju

0

(x)jj'

t

j

R

jxj�

Z

(ftg � dx) and�
t

('

t

) � sup

x2R

+

ju

0

(x)jj'

t

j

R

jxj �(ftg � dx)

are integrable as well. Moreover, we have

u('

t

��Z

t

) = �

t

('

t

) +

Z

[0;t]�R

n+1

1

ftg

(s)u('

s

� x) (�

Z

� �)(ds; dx): (3.1)

Integrability of the first two terms implies that the third term is integrable as well. From
JS, I.2.27, it follows thatE(

R

[0;t]�R

n+1

1

ftg

(s)u('

s

� x) (�

Z

� �)(ds; dx)jF

t�

) = 0 P -almost

surely and henceE(u('
t

��Z

t

)) = E(�

t

('

t

)). If (B;C; �)I denotes the integral character-
istics ofZ, then

Z

t

0

0

1

[0;t]

C(s)'

s

� dZ

s

=

Z

t

0

0

1

[0;t]

C(s)'

s

� dB

s

+

Z

t

0

0

1

[0;t]

C(s)'

s

� dZ

c

s

+

Z

[0;t

0

]�R

n+1

1

[0;t]

C(s)'

s

� x (�

Z

� �)(ds; dx) (3.2)

for any t0 2 R

+

. The first term on the right-hand side of Equation 3.2 equals
R

t

0

t

'

s

� b

s

ds

for t0 > t small enough, which implies its uniform integrability on[0; T ] for T > t small
enough. The second term is a square-integrable martingale on any compact interval[0; T ],
since' is bounded andE(

P

n

i;j=0

R

t

0

jc

ij

s

j ds) < 1 by assumption (cf. JS, III.4.5d). More-
over, the last term is uniformly integrable on any interval[0; T ] by Proposition 2.8. Hence,
R

�

0

1

[0;t]

C
(s)'

s

� dZ

s

is uniformly integrable as well. By right-continuity of the stochastic

integral this impliesE(j
R

t

0

0

1

[0;t]

C (s)'

s

� dZ

s

j)! 0 for t0 ! t.
We will now turn to the proof of the second statement. Lett 2 R

+

n �. Define the
processY = (Y

t

0

)

t

0

2R

+

by Y
t

0

:=

R

t

0

0

1

[0;t]

C(s)'

s

� dZ

s

. By Lemma 2.22,Y is a special
semimartingale, and, by Remark 2 in Section 2.5, so isu(Y ). Moreover, we have�Y

t

0

=

1

[0;t]

C(t

0

)'

t

0

��Z

t

0 , and hence�Y
t

0

(!) = 1

[0;t]

C(t

0

)'

t

0

(!) � x forMP

�

Z

-almost all(!; t0; x) 2

� R

+

� R

n+1 (in the sense of Jacod (1979), (3.10)). From�Z
t

= 0 P -almost surely and
by Itô's formula (cf. Jacod (1979), (3.89)), we have

u(G

t

0

(')�G

t�

(')) = u(Y

t

0

)

=

Z

t

0

0

u

0

(Y

s�

) dY

c

s

+

Z

[0;t

0

]�R

n+1

(u(Y

s�

+ '

s

� x)� u(Y

s�

)) � 1

[0;t]

C(s) (�

Z

� �)(ds; dx)

+

Z

t

0

0

u

0

(Y

s�

) dA

s

+

1

2

Z

t

0

0

u

00

(Y

s�

) dhY

c

; Y

c

i

s

+

Z

[0;t

0

]�R

n+1

�

u(Y

s�

+ '

s

� x)� u(Y

s�

)� u

0

(Y

s�

)'

s

� x

�

1

[0;t]

C(s) �(ds; dx)
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for any t0 � t, whereA denotes the predictable part of finite variation of the special semi-
martingaleY . As in the proof of Lemma 2.22, we conclude thatdY

c

s

= 1

[0;t]

C(s)'

s

� dZ

c

s

,
dhY

c

; Y

c

i

s

= 1

[0;t]

C
(s)

P

n

i;j=0

'

i

s

c

ij

s

'

j

s

ds anddA
s

= 1

[0;t]

C
(s)'

s

� dB

s

. It follows that we
have for anyt0 � t with [t; t

0

] \� = ?:

u(G

t

0

(')�G

t�

(')) =

Z

t

0

t



s

('

s

) ds (3.3)

+

Z

t

0

0

u

0

(Y

s�

)1

[0;t]

C
(s)'

s

dZ

c

s

(3.4)

+

Z

[0;t

0

]�R

n+1

(u(Y

s�

+ '

s

� x)� u(Y

s�

)) � 1

[0;t]

C (s) (�

Z

� �)(ds; dx) (3.5)

+

Z

t

0

t

(u

0

(Y

s�

)� 1)'

s

� b

s

ds (3.6)

+

1

2

Z

t

0

t

(u

00

(Y

s�

) + �)'

>

s

c

s

'

s

ds (3.7)

+

Z

t

0

t

Z

�

u(Y

s�

+ '

s

� x)� u(Y

s�

)� u('

s

� x)� (u

0

(Y

s�

)� 1)'

s

� x

�

F

s

(dx) ds:

(3.8)

Since' is bounded, the integrandju('
s

�x)�'

s

�xj in the definition of
t

('

t

) is dominated
by some multiple ofjxj2 ^ jxj (cf. the proof of Lemma 3.12). Therefore, the integrability
of
R

t

0

t



s

('

s

) ds follows from the regularity condition (RC 1). It remains to be shown that
the expectation of the remaining terms (3.4) - (3.8) iso(t

0

� t) for t0 # t. Sinceu0(Y
��

)'

is bounded andE(
R

t

0

P

n

i;j=0

jc

ij

s

j ds) < 1, it follows from JS, III.4.5d that term (3.4) is
a square-integrable martingale (on any compact interval[0; T ]) starting in0. Hence, its
expectation equals0. If we denote the upper bound ofj'j by M 2 R

+

, then ju(Y
s�

+

'

s

� x) � u(Y

s�

)j � sup

y2R

ju

0

(y)jM jxj. Moreover, (RC 1) implies that
R

[t;t

0

]�R

n+1

(jxj

2

^

jxj) �(ds; dx) =

R

t

0

t

R

(jxj

2

^ jxj)F

s

(dx) ds is integrable fort0 � t small enough. Together,
we obtain from Proposition 2.8 that term (3.5) is a uniformly integrable martingale on[0; T ]

for T � t small enough. Hence, its expectation is0 as well. Letp := 1 + ", q > 0 with
1

p

+

1

q

= 1, where" is chosen as in regularity condition (RC 1). Define the increasing
functionV : R

+

! R

+

by

V

t

0

:=

Z

t

0

0

E

�

jb

s

j

p

+

n

X

i;j=0

jc

ij

s

j

p

+

�

Z

(jxj

2

^ jxj)F

s

(dx)

�

p

�

ds:

SinceV is absolutely continuous, it is differentiable in�-almost allt 2 R

+

(cf. Elstrodt
(1996), VII.4.12). Assume for the rest of the proof that differentiability holds int. Then we
haveVt0�Vt

t

0

�t

= O(1) for t0 # t. By Jensen's inequality, it follows thatE(( 1

t

0

�t

R

t

0

t

jb

s

j ds)

p

) �

E(

1

t

0

�t

R

t

0

t

jb

s

j

p

ds) = O(1) for t0 # t and likewise forE(( 1

t

0

�t

R

t

0

t

P

n

i;j=0

jc

ij

s

j ds)

p

) and
E((

1

t

0

�t

R

(jxj

2

^ jxj)F

s

(dx) ds)

p

). If M 2 R

+

denotes an upper bound ofj'j, then the
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triangular inequality and Hölder's inequality yield
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L

p

:

By dominated convergence, the first factor converges to0 for t0 # t. Since the second factor
isO(1) for t0 # t, we have that the expectation of term (3.6) iso(t

0

� t) for t0 # t. Similarly,
it follows that term (3.7) iso(t0 � t) for t0 # t. By Taylor's formula with integral remainder
(cf. Heuser (1990b), p. 284-285) and the mean value theorem, we obtain

j(u(Y

s�

+ '

s

� x)� u(Y
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=
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�
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Similarly, the second order Taylor formula and the mean value theorem yield that
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�

�
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:

Together, we obtain by Hölder's inequality that
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As for (3.6), (3.7), it follows that the expectation of term (3.8) iso(t0 � t) for t0 # t. �

PROOF OF REMARK 2. If Z is discrete, thenu(G
t

0

(') � G

t�

(')) = u(�G

t

(')) =

u('

t

�Z

t

) P -almost surely for anyt0 � t with (t; t

0

] \� = ?. The claim now follows from
E(u('

t

��Z

t

)) = E(�

t

('

t

)) (cf. the proof of the previous theorem). �

PROOF OFLEMMA 3.16. By Equation (3.1) we have

u(G

t

0

(')�G

t�

(')) = u('

t

��Z

t

) = �

t

('

t

)+

Z

[0;t]�R

n+1

1

ftg

(s)u('

s

�x) (�

Z

� �)(ds; dx)

for anyt0 � t with (t; t

0

] \ � = ?. From JS, I.2.27, it follows that the conditional expecta-
tion givenF

t�

of the last term equals0 (cf. JS, I.2.27). This implies the claim. �
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PROOF OFLEMMA 3.20. First step:W.l.o.g., we assume'
0

= 0. Moreover, suppose that
' is locally bounded. The general case is considered in the fifth step. LetZ = Z

0

+M +A

be a decomposition of the semimartingaleX such that the components ofM are locally
square-integrable martingales andA 2V

d (cf. JS, I.4.21, I.4.17). By(S
k

)

k2N

denote a
localizing sequence of all components ofM such that, in addition,j'Sk j � k for anyk 2 N

(for existence cf. the proof of Lemma A.1). Moreover, define for anyk 2 N the stopping
time T

k

:= S

k

^ infft > 0 :

P

n

i=0

Va(A

i

)

t

� kg and let�
k

be the set of thek smallest
elements of�. Obviously, we haveT

k

" 1 P -almost surely fork ! 1. For anyk 2 N ,
we define the finite measure� on (
� R

+

;P) by

�(C) :=

1

X

k=1

2

�k

k

3

�

n

X

i=0

E(

R

S

k

0

1

C

dhM

i

;M

i

i

s

)

(n+ 1)(E(hM

i

;M

i

i

S

k

) + 1)

+

n

X

i=0

Z

T

k

�

0

1

C

dVa(A

i

)

s

+

�

P 


�

�j

[0;k]

+

X

s2�

k

"

s

��

(C)

�

for anyC 2 P. Note that the first part contains the Doléans measurem of M i in JS, p. 48.
Sincej'Sk j � k for anyk 2 N , we have

R

j'

i

j

2

d� � 4 and hence'i 2 L

2

(
 � R

+

;P; �)

for i = 0; : : : ; n.

Second step:We now show that there is a sequence('

(l)

)

l2N

inS such that'(l);i

! '

i in
L

2

(
� R

+

;P; �) for i = 0; : : : ; n. One easily sees that it suffices to find an approximating
sequence separately for each component'

i. Since any non-negativeP-measurable mapping
 : 
 � R

+

! R can be pointwise approximated from below by a linear combination of
indicator functions, it follows from the dominated convergence theorem (e.g. Bauer(1978),
Satz 15.4) thatf

P

p

�=1

a

i

1

A

i
: p 2 N ; C

1

; : : : ; C

p

2 P; a

1

; : : : ; a

p

2 Rg is dense in
L

2

(
 � R

+

;P; �). Therefore, it suffices to show that for anyC 2 P, " > 0, there exists
a eC 2 P such that1

e

C

2 S and
R

(1

C

� 1

e

C

)

2

d� = �((C n

e

C) [ (

e

C n C)) < ". Define

the ringR := f(H � f0g)

:

[

:

S

i2f1;:::;pg

]T

i�1

; T

i

] : H 2 F

0

; p 2 N ; andT
0

� : : : �

T

p

bounded stopping timesg. Observe that1
e

C

2 S for any eC 2 R. SinceR generatesP (cf.
JS, I.2.2), there exists aeC 2 R such that�((C n eC) [ (

e

C n C)) < " (cf. Billingsley (1979),
Theorem 11.4).

Third step:Denote by('(l)

)

l2N

a sequence inS as in the second step. Since'(l) con-
verges to' in �-measure, there is a subsequence, which we denote again by('

(l)

)

l2N

, such
that'(l)

! ' �-almost everywhere. By definition of� this implies that'(l)

! ' outside
some(P 
 (� +

P

s2�

"

s

))-null set. Since the mappings 7! �

t

( ) and 7! 

t

( ) are
continuous, it follows that('(l)

)

l2N

is an approximating sequence.

Fourth step: It remains to prove the convergenceG('(l)

) ! G(') P -almost surely
uniformly on any interval[0; T ]. By taking subsequences and by a diagonal procedure, it
suffices to prove that, for anyk 2 N , kG('(l)

)� G(')k

�

T

k

�

! 0 in probability. Fixk 2 N .
We have

E((kG('

(l)

)�G(')k

�

T

k

�

)

2

)
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� 2

n

X

i=0

E

�

�







Z

�

0

('

(l);i

s

� '

i

s

) d(M

i

)

S

k

s







�

1

�

2

�

+ 2

n

X

i=0

E

�

�







Z

�

0

('

(l);i

s

� '

i

s

) d(A

i

)

T

k

�

s







�

1

�

2

�

(3.9)

The first term on the right-hand side of (3.9) is dominated by

8

n

X

i=0

E

�

Z

1

0

('

(l);i

s

� '

i

s

)

2

dh(M

i

)

S

k

; (M

i

)

S

k

i

s

�

� 8

k

3

2

�k

(n + 1)(E(hM

i

;M

i

i

S

k

) + 1)

Z

('

(l)

� ')

2

d�

(cf. Doob's inequality, e.g. as in Corollary 2.52 (forT � 0)). The second term on the
right-hand side of (3.9) is dominated by

2

n

X

i=0

E

�

�

Z

T

k

�

0

j'

(l);i

s

� '

i

s

j dVa(A

i

)

s

�

2

�

� 2k

n

X

i=0

E

�

Z

T

k�

0

('

(l);i

s

� '

i

s

)

2

dVa(A

i

)

s

�

� 2

k

4

2

�k

Z

('

(l)

� ')

2

d�:

Since
R

('

(l)

� ')

2

d� converges to0 for l !1, it follows thatkG('(l)

)�G(')k

�

T

k

�

! 0

in L2

(
;F; P ) and thus in probability.
Fifth step: If ' is not locally bounded, define the bounded strategye' 2 A by e'i :=

arctan('

i

) for i = 0; : : : ; n. Let e'(l) be an approximating sequence ofe'. Using the conti-
nuity of tan; ; T , one easily shows that the sequence'

(l), defined by'(l);i

:= tan(e'

(l)

), is
an approximating sequence for' 2 A. �

PROOF OFCOROLLARY 3.21. We have to show that the approximating sequence('

(l)

)

l2N

in the second step of the previous proof can be chosen inS \M. Note thatM = f' 2 A :

'(!; t) 2 M for any(!; t) 2 
� R

+

g for some convex setM � R

n+1 . For anyl 2 N , let
(D

l

p

)

p2f1;:::;l

2(n+1)

g

be a partition offx 2 R

n+1

: jx

i

j � l for i = 0; : : : ; ng into cubes of edge
length2=l, and fix a pointxl

p

2 D

l

p

\M for anyp; l 2 N withDl

p

\M 6= ?. Now define for

anyl 2 N a strategy'(l)

2 A\M by'(l)

:=

P

l

2(n+1)

p=1

x

l

p

�1

'

�1

(D

l

p

)

. Dominated convergence
yields that'(l);i

! '

i in L2

(R

+

� 
;P; �) for i = 0; : : : ; n. As in the second step of the
previous proof, one shows that'�1(Dl

p

) 2 P can be replaced with someeC l;p

2 R. So, one
obtains an approximating sequence inS \M.

If ' is not locally bounded, one argues similarly as in the fifth step of the previous proof
by substitutinge' for ' andfM := fx 2 R

n+1

: (tan(x

0

); : : : ; tan(x

n

)) 2Mg for M . �

PROOF OF THEOREM 3.22. ): We will only show the second statement, because the
proofs are very similar.



106 Chapter 3. Markets, Strategies, Prices

First step:For any(!; t) 2 
�R

+

defineM(!; t) � R

n+1 byM(!; t) := f 2 R

n+1

:

g

j

(!; t;  ) � 0 for j = 1; : : : ; p andgj(!; t;  ) = 0 for j = p + 1; : : : ; qg. Then we have
M = f' 2 A : '(!; t) 2M(!; t) for any(!; t)g. LetN 2 P be a(P
�)-null set such that


t

('

t

) � 

t

(e'

t

) for any e' 2 M. Fix (!; t) 2 N

C . Since the mappingsgj are predictable
and convex, one can find, for any 2 M(!; t), a strategye'

t

2 M such thate'
t

(!) =  .
Indeed, one may definee' by e'(e!; s) :=  �1

M(e!;s)

( )+�(e!; s) �1

M(e!;s)

C( ), where�(e!; s)
is defined as the unique element ofM(e!; s) with the smallest Euclidean norm. For existence
and predictability of� we refer to the last two steps of the proof of Theorem 3.26. Therefore,
we have

t

('

t

) � 

t

( ) for any 2 M(!; t). Define a mappingh : R

n+1

! R by

h( ) := � � b

t

+

1

2

� 

>

c

t

 �

Z

(u( � x)�  � x)F

t

(dx):

Note thath( ) = �

t

( ) for any 2 R

n+1 .
Second step:We will now show thath is a convex function. Since 7! � � b

t

is linear
andc

t

is non-negative definite, this is evident for the first two terms (cf. Rockafellar (1970),
Theorem 4.5). Moreover, the mapping 7!  � x � u( � x) is convex for anyx 2 R

n+1 ,
since the matrix of its second partial derivatives(�x

i

x

j

u

00

( � x))

i;j2f0::::;ng

is non-negative
definite (cf. Rockafellar (1970), Theorem 4.5). Since integration is a linear operation, it
follows that the mapping 7!

R

( � x� u( � x))F

t

(dx) is convex as well (cf. Rockafellar
(1970), Theorem 4.1). Hence,h is convex by Rockafellar (1970), Theorem 5.2.

Third step: We will show thath : R

n+1

! R is differentiable with partial deriva-
tivesD

i

h( ) = �b

i

t

+

1

2

�

P

n

j=0

c

ij

t

 

j

�

R

x

i

(u

0

( � x) � 1)F

t

(dx) for any  2 R

n+1 ,
i 2 f0: : : : ; ng. The claim follows at once if we have proven that we may interchange dif-
ferentiation and integration in the integral relative toF

t

. Observe that for any ; x 2 R

n+1

we havejxi(u0( � x) � 1)j � jxj � (1 + sup

y2R

ju

0

(y)j) and, by the mean value theo-
rem, jxi(u0( � x) � 1)j � jxjj � xj sup

y2R

ju

00

(y)j and hencejxi(u0( � x) � 1)j �

(1 + sup

y2R

ju

0

(y)j + j j � sup

y2R

ju

00

(y)j)(jxj

2

^ jxj), where the first factor is bounded
in a neighbourhood of any 2 R

n+1 and the second factor isF
t

-integrable. By Billingsley
(1979), Theorem 16.8 it follows that we may differentiate under the integral sign.

Fourth step: We define theordinary convex program(P) in the sense of Rockafellar
(1970), p.273 by the convex functionh : R

n+1

! R, the setC := R

n+1 and the constraints
g

j

� 0 for j = 1; : : : ; p, gj = 0 for j = p + 1; : : : ; q. From the first step, we know
that '

t

is an optimal solution to (P). By Rockafellar (1970), Theorem 28.2 there exists
a Kuhn-Tucker vector(�

1

; : : : �

q

) for (P). It follows from Rockafellar (1970), Theorems
28.3 and 25.1 that0 2 @h('

t

) +

P

q

j=1

�

j

@g

j

('

t

) = frh('

t

) +

P

q

j=1

�

j

rg

j

('

t

)g, where
@f denotes the subdifferential andrf the gradient of a functionf . This implies0 =

D

i

h('

t

) +

P

q

j=1

D

j

�

i

g

j

('

t

) for anyi 2 f0; : : : ; ng and hence the claim.
(: Fix (!; t) 2 N

C , whereN denotes the(P 
 �)-null set in Theorem 3.22. By
Condition 2 and Rockafellar (1970), Theorem 28.3,'

t

is an optimal solution to the above
ordinary convex program (P). Therefore,h('

t

) � h( ) and hence
t

('

t

) � 

t

( ) for any
 2M(!; t). The statement concerning�

t

('

t

) follows along the same lines. �
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PROOF OFCOROLLARY 3.23. Apply Theorem 3.22 to fixed constraintsg1 = 0; : : : ; g

n�k+1

= 0 given bygj(�) := �

k�1+j

� 

k�1+j for anyj 2 f1; : : : ; n� k+1g, � 2 R

n+1 . Elemen-
tary calculations yield that the conditions in Theorem 3.22 are for any fixed(!; t) equivalent
to those in Corollary 3.23. �

Proposition 3.30 Let f : R

n+1

! R be a convex function andx; y 2 R

n+1 . Then the
mappingef : [0; 1]! R, � 7! f(�x+ (1� �)y) is convex as well.

PROOF. For any�; �
1

; �

2

2 [0; 1] we have

e

f((1� �)�

1

+ ��

2

) = f((�

1

x + (1� �

1

)y)(1� �) + (�

2

x + (1� �

2

)y)�)

� f(�

1

x + (1� �

1

)y)(1� �) + f(�

2

x + (1� �

2

)y)�

=

e

f(�

1

)(1� �) +

e

f(�

2

)�;

which implies thatef is convex by Rockafellar (1970), Theorem 4.1. �

PROOF OFLEMMA 3.24. Fix(!; t) 2 
 � R

+

(outside some(� 
 P )-null set as in the
proof of Theorem 3.22). In the proof of Theorem 3.22 we show that'

t

; e'

t

are solutions to
the ordinary convex program (P). Moreover, we obtaine0 2 @h('

t

)+

P

q

j=1

�

j

@g

j

('

t

) and,
using the same arguments,0 2 @h(e'

t

) +

P

q

j=1

�

j

@g

j

(e'

t

), where(�
1

; : : : ; �

q

) denotes a
Kuhn-Tucker vector for (P) which, by definition, does not depend on the particular solution.
By Rockafellar (1970), Theorem 23.5 (a))(b) this implies that the convex mappingeh :

R

n+1

! R,  7! h( ) +

P

q

j=1

�

j

g

j

( ) achieves its infimum in'
t

and e'
t

, and hence by
convexity of the minimum set, in any 2 E := f�'

t

+(1��)e'

t

: � 2 [0; 1]g. In particular,
we have�

j

g

j

( ) = 0 for anyj 2 f1; : : : ; qg. Now define mappingsh
1

; h

2

; h

3

; h

4

: [0; 1]!

R by

h

1

(�) :=

e

h(�'

t

+ (1� �)e'

t

)

h

2

(�) := �b

t

� (�'

t

+ (1� �)e'

t

)

h

3

(�) :=

1

2

�(�'

t

+ (1� �)e'

t

)

>

c

t

(�'

t

+ (1� �)e'

t

)

h

4

(�) :=

Z

�

(�'

t

+ (1� �)e'

t

) � x� u((�'

t

+ (1� �)e'

t

) � x)

�

F

t

(dx):

Observe thath
1

= h

2

+ h

3

+ h

4

is constant. By Proposition 3.30,h
2

; h

3

; h

4

are con-
vex. Therefore,h

3

= h

1

� h

2

� h

4

is also concave and hence affine. This implies that
0 = h

00

3

(�) = �('

t

� e'

t

)

>

c

t

('

t

� e'

t

) = � 

>

 for  := c

1=2

t

('

t

� e'

t

), wherec1=2
t

de-
notes a symmetric matrix satisfyingc1=2

t

c

1=2

t

= c

t

. Hence, we have = 0 and therefore
h

0

3

(�) = �('

t

� e'

t

)

>

c

t

(�'

t

+ (1 � �)e'

t

) = 0 for any� 2 [0; 1], which yields thath
3

is
constant. Thus,h

4

= h

1

� h

2

� h

3

is concave and hence affine. In the proof of Theorem
3.22 we have shown that we may differentiate the mapping 7!

R

(u

0

( �x)� �x)F

t

(dx)

under the integral sign. Since the derivative of an affine function is constant, thisimplies that
h

0

4

(1) =

R

x�('

t

� e'

t

)(1�u

0

('

t

�x))F

t

(dx) andh0
4

(0) =

R

x�('

t

� e'

t

)(1�u

0

(e'

t

�x))F

t

(dx)
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are equal. We obtain0 =
R

('

t

� x� e'

t

� x)(u

0

('

t

� x)� u

0

(e'

t

� x))F

t

(dx): The product un-
der the integral sign is negative or0, becauseu is a strictly decreasing function. Therefore,
('

t

� e'

t

) � x = 0 for F
t

-almost allx 2 R

n+1 . In particular,h
4

is constant. This implies that
h

2

= h

1

� h

3

� h

4

is constant as well. Hence('
t

� e'

t

)b

t

= 0. Similarly, one shows that
P -almost surely and for anyt 2 R

+

we have('
t

� e'

t

) � x = 0 for K
t

-almost allx 2 R

n+1 .
Now observe thatG(') � G(e') =

R

�

0

('

s

� e'

s

) � dX

s

. By Lemma 2.22 and the preced-
ing results,G(') � G(e') is an extended Grigelionis process with extended characteristics
(�; "

0

; 0; 0; 0; ("

0

1

�

(t))

t2R

+

)

E. Thus,G(')�G(e') = 0 up to indistinguishability. �

PROOF OF THEREMARK . This is true, sinceu0
�

(x) = u

0

1

(�x) for any� > 0; x 2 R. �

Proposition 3.31 For k; d 2 N

� and a measurable space(�;G), let �
1

; : : : ; �

k

: �� R

d

!

R be (G 
 B

d

)-measurable mappings that are continuous in the second argument. Then
there exists a(G
Bd

)-measurable mapping� : �� R

d

! R that is also continuous in the
second argument and such that for any(!;  ) 2 �� R

d ,

�(!;  ) � 0, (�

i

(!;  ) � 0 for i = 1; : : : ; k):

PROOF. Define � : R

k

! R by �(x) := inffjx � yj : y 2 (R

�

)

k

g. Then � is a
continuous mapping with�(x1; : : : ; xk) � 0 , (x

i

� 0 for i = 1; : : : ; k). Now let
�(!;  ) := �(�

1

(!;  ); : : : ; �

k

(!;  )). �

Proposition 3.32 1. For d 2 N and a measurable space(�;G), let �; � : �� R

d

! R

be(G
Bd

)-measurable mappings that are continuous in the second argument. Then
the mapping : � ! R , ! 7! supf�(!;  ) :  2 R

d with �(!;  ) � 0g is G-
measurable.

2. If, moreover, for any! 2 � there is a unique�(!) 2 R

d with �(!; �(!)) = (!) and
�(!;  ) � 0, then the mapping� : �! R

d is G-measurable as well.

PROOF. 1. W.l.o.g.� � 0. Otherwise considere�(!;  ) := � exp(��(!;  )). Moreover, by
lettingk!1, it suffices to proveG-measurability ofk : �! R, ! 7! supf�(!;  ) :  2

R

d with j j � k and�(!;  ) � 0g for anyk 2 N . Fix k 2 N . For anyl 2 N the mapping


k;l

: �! R, ! 7! supf�(!;  )� l(0 _ �(!;  )) :  2 R

d with j j � kg is G-measurable
because it suffices to take the supremum over all 2 Q

d . Fix ! 2 � for the moment. For
any closed setA � R

d with �(!; �) > 0 onA we have, by uniform continuity of� on the
compact setf 2 R

d

: j j � kg, that inffl(0 _ �(!;  )) :  2 A with j j � kg " 1

for l ! 1. By continuity of� there exists for any" > 0 an open setAC containing
f 2 R

+

: �(!; �) � 0g and such thatsupf�(!;  ) :  2 A

C with j j � kg � (!) + ".
Together, we obtain thatk;l # k for l !1. This implies thatk is G-measurable.

2. Denote bye� : ��R

d

! R a(G
Bd

)-measurable mapping, continuous in the second
argument and such thate�(!;  ) � 0 if and only if �(!;  ) � 0 and(!)��(!;  ) � 0 (cf.
Proposition 3.31). Then we have

�

i

(!) = supf 

i

:  2 R

d with �(!;  ) � 0 and(!)� �(!;  ) � 0g

= supf 

i

:  2 R

d with e�(!;  ) � 0g:
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for anyi 2 f1; : : : ; dg. By Statement 1,�i is aG-measurable mapping. �

PROOF OFTHEOREM 3.26. First step: Fix (!; t) 2 N

C with t 62 �, whereN is a null
set as in the second condition of Definition 3.25. If we define the mappingh as in the proof
of Theorem 3.22, then (RC 2) implies that there is a 2 R

n+1 with rh( ) = 0, i.e. such
that0 2 @h( ). By Rockafellar (1970), Theorem 23.5 (a))(b), this implies thath attains
its finite infimum in .

Second step:We now show thath is constant in its directions of recession. If the direc-
tion of y 2 R

n+1 is such a direction, theny is an element of the recession cone ofh, which
equals the recession cone offx 2 R

n+1

: h(x) � min hg = fx 2 R

n+1

: h(x) = min hg

(cf. Rockafellar (1970), Theorem 8.7). By definition, this means thath attains its minimum
in  + �y for any� 2 R

+

, in particular ine =  + y. With the same arguments as in the
proof of Lemma 3.24, it follows thaty �b

t

= 0, c
t

y = 0, y �x = 0 for F
t

-almost allx 2 R

n+1 .
An easy calculation shows that this impliesh(� + �y) = h(�) for any� 2 R

n+1

; � 2 R.
Thus,h is constant in the direction ofy.

Third step:By Rockafellar (1970), Corollary 27.3.3,h attains its infimum subject to the
given constraints. By Rockafellar (1970), p.264 the set of optimal solutions 2 M(!; t)

is convex (M(!; t) is defined as in the proof of Theorem 3.22). Since it is also non-empty
and bounded, the projection theorem (cf. Alt (1992), 2.17) yields that it contains a unique
element of minimal Euclidean norm, which we denote by'

t

(!). For (!; t) 2 N with
t 62 �, let '

t

(!) be the point of minimal Euclidean norm inM(!; t). For (!; t) 2 
 � �

(or more exactly, outside the evanescent set of regularity condition (RC 2)), wedefine'
t

(!)

analogously as above, but with respect to the functionh( ) := �

R

u( � x)K

t

(dx) instead
of h. Hence, we have defined a mapping' : 
� R

+

! R

n+1 meeting Conditions 1 and 2
in Definition 3.17.

Fourth step: It remains to show that' is predictable. By Proposition 3.31 there ex-
ists a (P 
 B

n+1

)-measurable mapping� : 
 � R

+

� R

n+1

! R that is continuous
in the last variable and such that(�(!; t;  ) � 0 ,  2 M(!; t)). Hence, the map-
ping e : 
 � R

+

! R, (!; t) 7! supf

t

( )1

N

C :  2 M(!; t)g is P-measurable
(cf. Proposition 3.32). Again by Proposition 3.31, there exists a(P 
 B

n+1

)-measurable
mapping e� : 
 � R

+

� R

n+1

! R that is continuous in the last variable and such
that (e�(!; t;  ) � 0 ,  2 M(!; t) ande(!; t) � 

t

( )1

N

C
(!; t) � 0). Observe that

there is a unique 2 R

n+1 (namely'
t

(!) (for t 62 �)) such that the following three
conditions hold: 2 M(!; t); 

t

( )1

N

C(!; t) = e(!; t); �j j = supf�j

e

 j :

e

 2

M(!; t) and
t

(

e

 )1

N

C(!; t) = e(!; t)g. Now apply Statement 2 of Proposition 3.32 to
the mappings�((!; t);  ) := �j j and e�. We obtain that(!; t) 7! '

t

(!)1

�

C(t) is a
predictable process. By considering� instead of one similarly shows that the mapping
(!; t) 7! '

t

(!)1

�

(t) is predictable as well. �

PROOF OFCOROLLARY 3.27. This follows immediately from Theorem 3.26 and Corol-
lary 3.23. �
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PROOF OFTHEOREM 3.28. 4) 3: First step:If Statement 3 is violated, then there exists
a t 2 � such that the setM(!) := f 2 R

n+1

: K

t

(�H

 

) = 0; K

t

(H

 

) > 0g is not
P -almost surely empty. Observe that the setf! 2 
 : M(!) 6= ?g equalsf! 2 
 :

There is a 2 R

n+1 with (!;  ) 2 g

�1

(f0g � R

�

+

)g, where the mappingg : 
 � R

n+1

!

R

2 is defined by(!;  ) 7! (

R

1

(�1;0)

( � x)K

t

(dx);

R

1

(0;1)

( � x)K

t

(dx)). Sinceg is
(F

t�


 B

n+1

)-measurable, it follows by the projection theorem (cf. Sainte-Beuve (1974),
Theorem 4) thatf! 2 
 : M(!) 6= ?g is FP

t�

-measurable. This implies that the set
G := (f! 2 
 : M(!) = ?g � f0g) [ g

�1

(f0g � R

�

+

) � 
 � R

n+1 is (F

P

t�


 B

n+1

)-
measurable. By Sainte-Beuve (1974), Theorem 3 there exists aF

P

t�

-measurable mapping
e

� : 
 ! R

n+1 with (!;

e

�(!)) 2 G for any! 2 
. Let � : 
 ! R

n+1 be aF
t�

-measurable
mapping thatP -almost surely equalse�. If s is the nearest neighbour to the left oft in �,
then� isF

s

-measurable by definition of�-discrete markets.
Second step:We show that� � (Z

t

� Z

s

) is non-negativeP -almost surely and positive
with positive probability. By Lemma 3.6, this implies that Statement 4 is violated. Firstly,
we have that

E

�

1

(�1;0)

(� � (Z

t

� Z

s

))jF

s

�

=

Z

1

(�1;0)

(� � x)K

t

(dx) = 0;

where the first equality follows from Remark 3 in Section 2.4 (and the fact thatZ
s

= Z

t�

,
F

s

= F

t�

) and the second equality from the definition of�. Hence, we obtain� �(Z
t

�Z

s

) �

0 P -almost surely. Similarly, we haveE(1
(0;1)

(� �(Z

t

�Z

s

))jF

s

) =

R

1

(0;1)

(� �x)K

t

(dx) =

K

t

(H

�

) P -almost surely, whereP (K
t

(H

�

) > 0) = P (M(!) 6= ?) > 0. Therefore,
P (� � (Z

t

� Z

s

) > 0) = E(K

t

(H

�

)) > 0.
3 ) 2: Let t 2 �. We have to show thatP -almost surely there exists a 2 R

n+1 with
R

x

i

u

0

( � x)K

t

(dx) = 0 for any i 2 f0; : : : ; ng. Fix ! 2 
. This is equivalent to saying
thatP -almost surely there exists a 2 R

n+1 with 0 2 @h( ), where the convex function
h : R

n+1

! R (for fixed ! 2 
) is defined by 7! �

R

u( � x)K

t

(dx). It suffices to
show thath is constant in all its directions of recession (cf. Rockafellar (1970), Theorems
23.5 (b))(a) and Theorem 27.1(b)), for differentiability ofh compare the proof of Theorem
3.22). If the direction of 2 R

n+1 is a direction of recession ofh, then for anyz 2 R

n+1 the
mappingR

+

! R, � 7! h(z+� ) is decreasing (cf. Rockafellar (1970), p.265). Forz = 0 it
follows thatg : R

+

! R, � 7! �

R

u(� �x)1

�H

 
(x)K

t

(dx)�

R

u

0

(� �x)1

H

 
(x)K

t

(dx)

is a decreasing function. The utility functionu is concave and its derivative is bounded
from above. Hence,� 7!

u(� �x)

� �x

converges for � x < 0 and� ! 1 from below to

lim

y!�1

u

0

(y) =: u

0

(�1). This implies that
R

u(� �x)

� �x

( � x)1

�H

 (x)K

t

(dx) converges
for � ! 1 to u0(�1)

R

( � x)1

�H

 (x)K

t

(dx), which is strictly negative if and only if
K

t

(�H

 

) 6= 0. In this case, the first integral in the definition ofg grows asymptotically
linearly for � ! 1. Since the second integral is bounded from below by� sup

y2R

u(y)

andg is decreasing, this is impossible. Therefore, we must haveK

t

(�H

 

) = 0, which by
Statement 3 impliesK

t

(H

 

) = 0 and hence � x = 0 for K
t

-almost allx 2 R

n+1 . This
implies that the mapping� 7! h(z + � ) is constant for anyz 2 R

n+1 . Hence, the claim
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follows.
2) 1: This will be shown in Theorem 3.36 and the following Remark 3.
1) 4: Assume that Statement 1 holds but the market allows arbitrage. For ease ofnota-

tion assume that� = N

� . By Lemma 3.6 there is at 2 N

� and a boundedF
t�1

-measurable,
R

n+1 -valued random variable such that � (Z
t

� Z

t�1

) is non-negativeP -almost surely
and positive with positive probability. TakeP � relative tot as in Statement 1. By JS, I.1.64
we haveE�

( � (Z

t

�Z

t�1

)jF

t�1

) =  � (E

�

(Z

t

jF

t�1

)�Z

t�1

) = 0 P

�-almost surely. Since
 � (Z

t

� Z

t�1

) � 0 P

�-almost surely, this implies � (Z
t

� Z

t�1

) = 0 P

�- and hence
P -almost surely. Thus we have obtained a contradiction. �

PROOF OFLEMMA 3.29. 1. This follows from Corollary 3.23 andu0
�

(y) = u

0

1

(�y) for any
� > 0; y 2 R.

2. In the proof of Theorem 3.22 we have shown that' 2 A is u-optimal if and only
if, for fixed (!; t) 2 
 � R

+

, '(!; t) is an optimal solution of some convex functionh.
Since the set of extremal points of a convex function is convex, it follows that any convex
combination ofu-optimal strategies (forA) is u-optimal forA.

Now if '(j)

2 A is u
�

j

-optimal forA, then, by Statement 1,�
j

'

(j) is u
1

-optimal forA.
Therefore, the convex combination(

P

p

j=1

�

�1

j

)

�1

P

p

j=1

'

(j) is u
1

-optimal forA, which, by
Statement 1, yields the claim.

3. This follows immediately from Statements 1 and 2.
4. As in Statement 2, we conclude that1

p

P

p

j=1

'

(j) is au-optimal strategy forA. �

3.3 Trading Corridors

As in Subsection 1.2.3, we define regions of strategies whose local utility does not deviate
too far from the optimal value. Since we are dealing with two kinds of local utility in the
general framework (�

t

for t 2 � and
t

for the quasi-continuous part between fixed jump
times), we let the trading corridor also depend on twoutility bandwidths"

1

; "

2

.

Definition 3.33 Let M � A be convexly restricted withg1; : : : ; gq as in Definition 3.3.
Assume that au-optimal strategy' 2 M for M exists and fix"

1

; "

2

2 R

+

. Let J :


� R

+

! P(R

n+1

) be a mapping with

J(!; t) �M(!; t) := f 2 R

n+1

: g

j

t

( ) � 0 for j 2 f1; : : : ; pg

andgj
t

( ) = 0 for j 2 fp+ 1; : : : ; qgg

for any(!; t) 2 
�R

+

. We callJ a (u; "
1

; "

2

)-trading corridor forM if the following two
conditions hold.

1. P -almost surely we have for anyt 2 R

+

that

 2 J(!; t), �

t

( ) � �

t

('

t

)� "

1

:
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2. Outside some(P 
 �)-null set we have

 2 J(!; t), 

t

( ) � 

t

('

t

)� "

2

:

Lemma 3.34 LetM � A as in Theorem 3.22. Assume that au-optimal strategy' 2M for
M exists (e.g. by Theorem 3.26). Then we have outside some(P 
 (�+

P

t2�

"

t

))-null set:

1. J(!; t) is a non-empty convex set.

2. If  is an element of the boundary ofJ(!; t) in M(!; t), then

�

t

( ) = �

t

('

t

)� "

1

for t 2 �



t

( ) = 

t

('

t

)� "

2

for t 2 R

+

n�:

Proofs

PROOF OFLEMMA 3.34. Fix(!; t) 62 N , whereN is a(P 
 �)-null set as in the second
condition of Definition 3.17. With the same notation as in the proof of Theorem 3.22, we
have thatJ(!; t) = M(!; t) \ f 2 R

n+1

: h( ) � h('

t

) + "

2

g. SinceM(!; t) andh
are convex, this is a convex set containing'

t

(!). From the continuity ofh, it follows that
h( ) = h('

t

) + "

2

on the boundary ofJ(!; t) in M(!; t). For t 2 �, the proof works
similarly. �

3.4 Derivative Pricing

While the definition of optimal trading in continuous-time was complicated by the lack of
a minimal time span, we can easily transfer the approach concerning derivative pricing to
our more general setting. In this section we assume that a market ofunderlyings0; : : : ; l as
in the previous sections is given. More specifically, suppose that the underlyings' price pro-
cessZ = (Z

0

; : : : ; Z

l

) is an extended Grigelionis process on some filtered probability space
(
;F; (F

t

)

t2R

+

; P ) and meets regularity condition (RC 1' ). Denote its extended characteris-
tics by(�; PZ

0

; b; c; F;K)

E. Moreover,derivativesl+1; : : : ; n are given by their discounted
terminal priceX i at timet

i

for i = l + 1; : : : ; n. TheX i are assumed to beF
t

i

-measurable
random variables. We want to calculate derivative prices under the same assumptions as in
Subsection 1.2.4. Suppose that the derivative market is almost exclusively dominated by
speculators. More specifically, we assume that all speculators applyu

�

-optimal strategies
(with possibly differing risk aversion�) and that the union of the portfolios of these specu-
lators contains0 derivatives. By Statement 3 of Lemma 3.29 this implies that there exists a
u

1

-optimal portfolio for the speculator that has a zero position in any derivative. Thus, the
derivative price processes have to be neutral in the sense of the following

Definition 3.35 We call the stochastic processesZ l+1

; : : : ; Z

n neutral price processesfor
the derivativesl + 1; : : : ; n if the following conditions hold.
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1. Z = (Z

0

; : : : Z

n

) is an extended Grigelionis process.

2. Zi

t

= X

i

P -almost surely for anyt � t

i

and anyi 2 fl + 1; : : : ; ng.

3. The convexly restricted setM := f' 2 A : '

i

= 0 for any i 2 fl + 1; : : : ; ngg

contains au
1

-optimal strategy forA.

Remarks.

1. In particular, the marketZ meets regularity condition (RC 2). Moreover, by Statement
1 of Lemma 3.29,M contains au

�

-optimal strategy forA for any� > 0.

2. If we substitute an arbitrary utility functionu for the standard functionsu
�

, then, by
Statement 4 of Lemma 3.29 and the same reasoning as above, we also end up with
neutral prices, but this time defined relative tou instead ofu

1

.

3. Regularity condition (RC 1' ) is only assumed to ensure that maximization of local
utility is an intuitive concept (by Theorem 3.14 and Lemma 3.16). Mathematically, it
is not necessary.

The following theorem corresponds to Lemma 1.7 in the introduction. It provides sufficient
conditions for neutral derivative prices and allows one to compute them by means of an
equivalent martingale measure.

Theorem 3.36 LetT := supft

l+1

; : : : ; t

n

g and fix� > 0 (e.g.� = 1, cf. Remark 2 below).
Assume that the following conditions hold.

1. The marketZ = (Z

0

; : : : Z

l

) meets regularity condition (RC 2), i.e. there exists a
u

�

-optimal strategy' 2 A for A.

2. 'T is locally bounded (cf. Lemma A.1 in the appendix).

3. The local martingaleL :=E (N) is a martingale, whereN = (N

t

)

t2R

+

is defined by

N

t

= ��

Z

t^T

0

'

s

� dZ

c

s

+

Z

[0;t^T ]�R

l+1

�

1

�

C(s)(u

0

�

('

s

� x)� 1)

+ 1

�

(s)

u

0

�

('

s

� x)

R

u

0

�

('

s

� ex)K

s

(dex)

�

(�� �)(ds; dx):

Here, the random measure� onR
+

� R

n+1 is defined by

�([0; t]�G) := �

Z

([0; t]�G) + "

0

(G)

X

s2�\[0;t]

(1� �

Z

(fsg � R

n+1

))

(for anyt 2 R

+

,G 2 B

n+1) and� denotes its compensator.

4. TheP �-local martingaleZT

� Z

0

is aP �-martingale, where the probability measure
P

� is defined bydP
�

dP

:= L

T

.
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5. The market is�-discrete, or alternatively,(F
t

)

t2R

+

is the canonical filtration (or its
P -completion) of an extended Grigelionis processY such that all local martingales
have the martingale representation property relative toY (e.g. a process as in Theo-
rem 2.65).

6. For anyi 2 fl + 1; : : : ; ng, there exist�; � 2 S,M 2 R such that

�M +

Z

T

0

�

s

� dZ

s

� X

i

�M +

Z

T

0

�

s

� dZ

s

: (3.10)

Then there exist up to indistinguishability unique neutral price processesZ

l+1

; : : : ; Z

n for
the derivativesl + 1; : : : ; n such that the marketZ = (Z

0

; : : : ; Z

n

) allows no arbitrage on
[0; T ]. These are given by

Z

i

t

= E

�

(X

i

jF

t^T

) for anyt 2 R

+

; (3.11)

whereE� denotes expectation with respect toP �.

Remarks.

1. In Section 3.2 we justify the use ofu-optimal strategies only in markets where regu-
larity condition (RC 1' ) holds. For a satisfactory foundation of the derived prices, one
should verify that (RC 1' ) holds in the enlarged marketZ = (Z

0

; : : : ; Z

n

) as well.

2. P � does not depend on the choice of theu
�

-optimal strategy' nor on the derivatives
l+1; : : : ; n. The conditional expectationsE�

(X

i

jF

t^T

) depend neither on' nor onT
as long asT > t

i

. Moreover,P � and hence its conditional expectation is independent
of the chosen risk aversion�.

3. In�-discrete markets Conditions 2 and 3 in Theorem 3.36 automatically hold (at least
' can be chosen in that way). If, in addition,Zi

�Z

i

0

for i = 0; : : : ; l is bounded from
below by a constantD 2 R, then Condition 4 holds as well.

4. Assumption 3 in the previous theorem holds if the followingNovikov-type condition
is fulfilled: For the random variable

C

T

:=

�

2

2

Z

T

0

'

>

t

c

t

'

t

dt+

Z

T

0

Z

�

u

0

�

('

t

� x)(log(u

0

�

('

t

� x))� 1) + 1

�

F

t

(dx)dt

+

X

t2�\[0;T ]

Z

u

0

�

('

t

� x)

R

u

0

�

('

t

� ex)K

t

(dex)

log

�

u

0

�

('

t

� x)

R

u

0

�

('

t

� ex)K

t

(dex)

�

K

t

(dx)

we haveE(exp(C
T

)) < 1. (For the last integrand, we set0=0 = 0, log(0) = �1,
0 � 1 = 0.)
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5. Assumption 4 in Theorem 3.36 holds if� = ? (resp.K
t

= "

0

for anyt 2 �) and

E

�

�

l

X

i;j=1

Z

T

0

jc

ij

t

j dt+

Z

T

0

Z

(jxj ^ jxj

2

)F

t

(dx)dt

�

<1

6. Assumption 6 in the previous theorem means that the derivatives can besuperhedged.
If we replace it with the following two weaker conditions, then the existence statement
and Equation 3.11 (but not necessarily the uniqueness) still hold.

(a) E�

(jX

i

j) <1 for i = l + 1; : : : ; n:

(b) TheP -semimartingalesZ l+1

; : : : ; Z

n defined by Equation 3.11 areP -special
semimartingales.

7. For the proof of Theorem 3.36 it suffices to assume that Condition 6 holds with a
F

0

-measurable, integrable random variableM instead ofM 2 R.

In discrete-time models the previous theorem looks a little easier.

Corollary 3.37 LetT := supft

l+1

; : : : ; t

n

g and assume that the following conditions hold.

1. The marketZ = (Z

0

; : : : ; Z

l

) is�-discrete and allows no arbitrage. Moreover,Zi

�

Z

i

0

is bounded from below by a constantD 2 R for i = 0; : : : ; l.

2. For anyi 2 fl + 1; : : : ; ng there exist�; � 2 S,M 2 R such that

�M +

Z

T

0

�

s

� dZ

s

� X

i

�M +

Z

T

0

�

s

� dZ

s

:

Define the probability measureP � (the same as in Theorem 3.36) by its Radon-Nikodým
density

dP

�

dP

:=

Y

s2�\[0;T ]

u

0

('

s

��Z

s

)

R

u

0

('

s

� x)K

s

(dx)

;

where' 2 A is a u
�

-optimal strategy forA. Then there exist up to indistinguishability
unique neutral price processesZ l+1

; : : : ; Z

n for the derivativesl + 1; : : : ; n. These are
given by

Z

i

t

= E

�

(X

i

jF

t^T

) for anyt 2 R

+

; (3.12)

whereE� denotes expectation with respect toP �.

Remark. N

� -discrete markets can be expressed in terms of the transition probabilities
P (AjF

t�1

) for any t 2 N

� , A 2 F

t

. Relative to the pricing measure, the corresponding
transition probabilities are given by

P

�

(AjF

t�1

) = E

�

u

0

�

('

t

��Z

t

)

E(u

0

�

('

t

��Z

t

)jF

t�1

)

1

A

�

�

�

�

F

t�1

�

;
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where theF
t�1

-measurableRl+1 -valued random vector'
t

is chosen such that
Z

xu

0

�

('

t

� x)P

�Z

t

jF

t�1

(dx) = 0:

Observe that, in order to compute the transition probabilities fromF

t�1

to F
t

relative toP �

(for fixed t 2 N), all we have to know are the corresponding probabilities relative toP . The
past up to timet� 1 or the future beyondt of the model are irrelevant. Derivative prices can
now be recursively obtained from

Z

i

t�1

= E

�

(Z

i

t

jF

t�1

):

Often one is not really interested in the Radon-Nikodým density of the pricing measure
P

�, but rather in the dynamic of the price processes relative toP

�.

Corollary 3.38 Suppose thatV = (V

1

; : : : ; V

k

) is anRk -valued stochastic process such
that (Z; V ) = (Z

0

; : : : ; Z

l

; V

1

; : : : ; V

k

) is an extended Grigelionis process with extended
characteristics(�; P (Z;V )

0

; b; c; F ;K)

E. Assume that Conditions 1–3 in Theorem 3.36 or
Condition 1 in Corollary 3.37 hold. IfV 1

; : : : ; V

k are P �-special semimartingales, then
(Z; V ) is an extended Grigelionis process relative toP �, and itsP �-characteristics(�;
P

(Z;V )

0

;

e

b; c;

e

F;

e

K)

E are given by

e

b

i

t

= 0 for i = 0; : : : ; l;

e

b

i
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u
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�
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(dx) for i = l + 1; : : : ; l + k;

e

F

t

(G) =

Z

1

G
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u
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�
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t

x

�
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F

t

(dx) for anyG 2 B
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;

e
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(G) =

Z
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u
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�

(
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�=0
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(dex)
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(dx) for anyG 2 B

l+1+k

for anyt � T , where ineb = (

e

b

0

; : : : ;

e

b

l+k

) etc. the indices0; : : : ; l correspond toZ and the
componentsl + 1; : : : ; l + k to V . For anyt > T , we have(eb

t

;ec

t

;

e

F

t

;

e

K

t

) = (b

t

; c

t

; F

t

; K

t

).

Remarks.

1. The statements and proofs in this section still hold if one substitutes an arbitrary utility
functionu with risk aversion� for the standard utilityu

�

. If the processesZ0

; : : : ; Z

l

are continuous, then the resulting pricing measureP

� and hence the neutral derivative
prices are independent of the choice of the utility functionu (and of�). In the jump
case this is generally not true. It is an open question how strongly the prices are
affected by the particular shape ofu. We hope that this dependence is not very large.

2. We are interested in easily checkable sufficient conditions for Condition 4 inTheorem
3.36 and for integrability condition (RC 1) for the enlarged marketZ = (Z

0

; : : : ; Z

n

).
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Proofs

Proposition 3.39 Let V 1

; V

2 be special semimartingales. IfX is a semimartingale with
V

1

� X � V

2, thenX is a special semimartingale as well.

PROOF. Let B :=

P

t��

�X

t

1

fj�X

t

j>1g

and eX := X � B. By JS, I.4.24,eX is a special
semimartingale. Moreover,B has pathwise only finitely many jumps on any finite interval.
SinceV 2

�V

1 is a special semimartingale, we havesup

t��

j(V

2

t

�V

1

t

)�(V

2

0

�V

1

0

)j 2 A

+

loc

(cf. JS, I.4.23). By Jacod (1979), Exercise 2.8 we have
p

[V

1

; V

1

] 2 A

+

loc

and hence
q

P

t��

(�V

1

t

)

2

2 A

+

loc

. Let (T
n

)

n2N

be a sequence of stopping times withT
n

" 1

P -almost surely and such thatft � T

n

: j�X

t

j > 1g � n, E(sup
t�T

n

j(V

2

t

� V

1

t

) �

(V

2

0

� V

1

0

)j) < 1, E
�

q

P

t�T

n

(�V

1

t

)

2

�

< 1 andjV 2

0

� V

1

0

j � n on fT
n

> 0g. From

j�Xj � (V

2

� V

1

) + j�V

1

j we can now concludeVa(B)
T

n

=

P

t�T

n

j�X

t

j1

fj�X

t

j>1g

�

n sup

t�T

n

j(V

2

t

� V

1

t

) � (V

2

0

� V

1

0

)j + n +

P

t�T

n

j�V

1

t

j1

fj�X

t

j>1g

for anyn 2 N . Since
1

n

P

t�T

n

j�V

1

t

j1

fj�X

t

j>1g

�

q

1

n

P

t�T

n

j�V

1

t

j

2, we obtain thatE(Va(B)
T

n

) <1 as well.

Therefore,B 2 A

loc

and hence it is a special semimartingale (cf. JS, I.4.23). This proves
the claim. �

PROOF OF THEOREM 3.36. First step: We show thatN is well-defined and strictly
positive onR

+

. Firstly, note that�([0; t] � G) =

R

t

0

F

s

(G) ds +

P

s2�\[0;t]

K

s

(G) for
anyG 2 B

n+1, t 2 R

+

. Sinceju0
�

('

s

� x) � 1j � sup

y2R

ju

00

�

(y)jj'

s

jjxj and since'
is locally bounded and

R

t

0

R

(jxj

2

^ jxj)F

s

(dx) ds < 1 P -almost surely for anyt, we
have that

R

[0;�]�R

n+1

1

�

C (s)(ju

0

�

('

s

� x) � 1j

2

^ ju

0

�

('

s

� x) � 1j) �(ds; dx) 2 V

+ and

hence2 A +

loc

by JS, I.3.10. Therefore,1
�

C (s)(u

0

�

('

s

� x) � 1) is in G

loc

(�) (cf. JS,
II.1.33c). Moreover, one easily verifies thatjW j � �

t

=

P

s�t

1

�

(s) = j� \ [0; t]j for

W (!; s; x) := 1

�

C (s)

u

0

�

('

s

�x)

R

u

0

�

('

s

�ex)K

s

(dex)

. By JS, II.1.28, this implies thatW 2 G

loc

(�). To-
gether, we obtain that the integrand in the stochastic integral with respect to � � � is in
G

loc

(�) and henceN is well-defined. Observe that, by definition of the integral with respect
to �� �, the jumps ofN are given by

�N

t

=

(

u

0

�

('

t

��Z

t

)� 1 if t =2 �;

u

0

�

('

s

��Z

t

)

R

u

0

�

('

s

�ex)K

s

(dex)

� 1 if t 2 �:

(3.13)

Sinceu0
�

> 0, we have that�N
t

+ 1 is positive, which, by Jacod (1979), (6.5), implies that
N is positive as well.

Second step:SinceL
T

is a positive random variable withE(L
T

) = 1, we have that
P

� is a well-defined probability measure equivalent toP . From the boundedness ofu
�

as
well as Lemma 2.27 and Condition 3 in the remark following Theorem 2.26, it followsthat
Z

0

; : : : ; Z

l areP �-special semimartingales. Assume thatV

1

; : : : ; V

k are arbitrary processes
as in Corollary 3.38. By Theorem 2.26,(Z; V ) is an extended Grigelionis process relative
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to P �. Corollary 3.23 yields that, outside some(P 
 �)-null set, we have

0 = b

i

t

� �

l

X

�=0

c

i�

t

'

�

t

+

Z

x

i

�

u

0

�

�

l

X

�=0

'

�

t

x

�

�

� 1

�

F

t

(dx)

for i = 0; : : : ; l and t � T , since the firstl + 1 components of(Z; V ) are (Z0

; : : : ; Z

l

).
Therefore, the shape of theP �-characteristics in Corollary 3.38 follows immediately from
Lemma 2.27, Theorem 2.26 and the fact that1

�

� (�� �) = 0. In particular, we have that

�

e

B

i

t

=

Z

x

i

e

K

t

(dx) =

1

R

u

0

�

(

P

l

�=0

'

�

t

ex

�

)K

s

(dex)

Z

x

i

u

0

�

�

l

X

�=0

'

�

t

x

�

�

K

t

(dx)

for i = 0; : : : ; l andt � T (cf. Remark 2 in Section 2.4), whereeB denotes the predictable
part of finite variation of(Z; V ) relative toP �. The last integral equals

R

x

i

u

0

�

(

P

l

�=0

'

�

t

x

�

)

K

t

(dx), which is 0 by Corollary 3.23. Altogether, we obtain that(

e

B

i

)

T

= 0 for any i 2
f0; : : : ; lg, and hence that(Z � Z

0

)

T is aP �-local martingale.
Third step: We will now prove thatX l+1

; : : : ; X

n areP �-integrable. SinceZT

� Z

0

is aP �-uniformly integrable martingale and hence of class (D), it follows thatZ

T

�

� Z

0

is
P

�-integrable for any stopping time� . Since�; � in Condition 6 are inS, this implies that
theX i areP �-integrable as well.

Fourth step:By Equation (3.11) we defineP �-martingalesZ l+1

; : : : ; Z

n. We will now
show thatZ l+1

; : : : ; Z

n areP -special semimartingales. Fixi 2 fl+1; : : : ; ng and letM; �; �

be as in Condition 6. By Lemma 2.22 we have that�M +

R

�

0

�

s

� dZ

T

s

andM +

R

�

0

�

s

� dZ

T

s

are extended Grigelionis processes and hence special semimartingales. Moreover, we have
that

Z

i

t

= E

�

(X

i

jF

t

) �M + E

�

�

Z

T

0

�

s

� dZ

T

s

�

�

�

F

t

�

=M +

Z

t

0

�

s

� dZ

T

s

for anyt 2 R

+

, where the last equation follows from the martingale property of
R

�

0

�

s

� dZ

T

s

.
Similarly, one showsZi

� �M +

R

�

0

�

s

� dZ

T

s

. By Proposition 3.39 we have thatZi is a
special semimartingale.

Fifth step:We will now show thatZ = (Z

0

; : : : ; Z

n

) is an extended Grigelionis process
relative toP . If the market is�-discrete, this follows immediately from Lemma 2.20 and
the subsequent remark. Otherwise, letY be as in Condition 5. W.l.o.g., we may assume that
the set of fixed jump times in the extended characteristics ofY is also�. By Y c;�, �Y;� we
denote the continuous martingale part and the compensator of the jump measure�

Y of Y
relative toP � instead ofP . By Girsanov's theorem (cf. JS, III.3.24) we have thathY

c;�

; Y

c;�

i

and�Y;�([0; �] � G) are absolutely continuous with respect toA
t

= t +

P

s�t

1

�

(s) in the
sense of Lemma 2.10. In particular,Y c;� is an extended Grigelionis process relative to
P

�. By JS, III.5.24 allP �-local martingales have the representation property relative toY .
Therefore,Z

T

can be written as(Zi

)

T

= Z

i

0

+

R

�

0

H

i

s

� dY

c;�

s

+W

i

� (�

Y

� �

Y;�

) for some
H

i

2 L

2

loc

(Y

c;�

), W i

2 G

loc

(�

Y

) (both relative toP �) for i = 0; : : : ; n. By JS, III.4.7
one obtains that the first integral is an extended Grigelionis process relative to P �. The last
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termW � (�

Y

� �

Y;�

) and henceZ
T

is, by Proposition 2.24 and the following remark, a
P

�-extended Grigelionis process as well. SinceZ

0

; : : : ; Z

n areP -special semimartingales,
Theorem 2.26 yields thatZ is an extended Grigelionis process relative toP .

Sixth step:We will show thatZ l+1

; : : : ; Z

n are neutral price processes for the deriva-
tives l + 1; : : : ; n and thatZ = (Z

0

; : : : ; Z

n

) allows no arbitrage on[0; T ]. Denote by
(�; P

Z

0

; b; c; F ;K)

E the extended characteristics ofZ relative toP . Application of the
second step (i.e. Corollary 3.38) toZ l+1

; : : : ; Z

n yields for the extended characteristics
(�; P

�

Z

0

;

e

b; c;

e

F;

e

K)

E of Z relative toP �:
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t
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+
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�
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(dx) (3.14)
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�
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(dex)
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(dx)

for anyi 2 f0; : : : ; ng, t 2 [0; T ]. In particular,
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(dx) =
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�=0
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�

K

t

(dx) (3.15)

for any i 2 f0; : : : ; ng, t 2 � \ [0; T ], where eB denotes the predictable part of finite
variation of theP �-special semimartingaleZ. SinceZ

T

� Z

0

is aP �-local martingale, we
have eBT

= 0. Therefore, Equations (3.14), (3.15) and Corollary 3.23 yield that the strategy
e', defined bye'i := '

i for i = 0; : : : ; l and e'i = 0 for i = l + 1; : : : ; n, is u
�

-optimal for
A. Thus,Z l+1

; : : : ; Z

n are neutral price processes forl + 1; : : : ; n. Moreover, the market
Z

T

= (Z

0

; : : : ; Z

n

)

T allows no arbitrage (cf. Lemma 3.7).
Seventh step:We show thatP � does not depend on the choice of the optimal strategy

'. Let e' = (e'

0

; : : : ; e'

l

) be anotheru
�

-optimal strategy for the speculator in the market
(Z

0

; : : : ; Z

l

). In the proof of Lemma 3.24 we have shown that outside the usual null sets we
havec

t

('

t

� e'

t

) = 0 and'
t

� x = e'

t

� x for F
t

- resp.K
t

-almost allx 2 R

n+1 . In particular,
we haveW � � = 0 for anyW 2 G

loc

(�) of the formW (!; t; x) = g(!; t; '

t

(!) � x) �

g(!; t; e'

t

(!) � x), whereg : 
 � R

+

� R ! R is a(P 
 B)-measurable mapping. By JS,
II.1.34 it follows thathW �(���);W �(���)i = 0 and henceW �(���) = 0. This implies
that the stochastic integrals relative to� � � in the definition ofN coincide regardless of
whether we insert the strategy' or e'. Indeed, just observe that the integrand is of the form
g(!; t; '

t

(!) � x) for some predictableg. Similarly, we have that
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>

c
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('

s

�

e'

s

) ds = 0 by JS, II.4.7. Together, we obtain that the local martingaleN is the same for'
ande'.

Eighth step: We will show that, up to indistinguishability, there are no other neu-
tral price processes for the derivatives such that the extended market allows no arbitrage.
Otherwise, leteZ l+1

; : : : ;

e

Z

n be another set of such processes. By definition, there is a
strategye' = (e'

0

; : : : ; e'

l

; 0; : : : ; 0) that is u
�

-optimal for the speculator in the market
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(Z

0

; : : : ; Z

l

;

e

Z

l+1

; : : : ;

e

Z

n

). Using Corollary 3.23, this implies that(e'0

; : : : ; e'

l

) is u

�

-
optimal for the speculator in the market(Z

0

; : : : ; Z

l

). By the seventh step,' and(e'0

; : : : ;

e'

l

) lead to the same measureP �. Fix i 2 fl + 1; : : : ; ng. From Condition 6 and a simple
arbitrage argument, it follows that
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(3.16)

for anyt 2 [0; T ]. Therefore,eZ l+1

; : : : ;

e

Z

n areP �-special semimartingales (cf. Proposition
3.39). Application of the second step (i.e. Corollary 3.38) toeZ l+1

; : : : ;

e

Z

n yields as before
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for anyi 2 f0; : : : ; ng, t 2 [0; T ], where nowb; B etc. correspond to theP -characteristics of
(Z

0

; : : : ; Z

l

;

e

Z

l+1

; : : : ;

e

Z

n

) andeb; eB etc. to theP �-characteristics of the same process. By
Corollary 3.23 and theu

�

-optimality of (e'0

; : : : ; e'

l

; 0; : : : ; 0) it follows that eBT

= 0, which
in turn implies thateZ l+1

�

e

Z

l+1

0

; : : : ;

e

Z

n

�

e

Z

n

0

areP �-local martingales. Since they are
bounded from below and above by uniformly integrableP

�-martingales (cf. Equation 3.16),
it follows that they are of class (D) and thereforeP �-martingales with the same terminal
valuesX l+1

; : : : ; X

n asZ l+1

; : : : ; Z

n. This implieseZi

= Z

i for i = l + 1; : : : ; n. �

PROOF OF THE REMARKS. 2. We have already shown in the seventh step of the preceding
proof thatP � and henceE�

(X

i

jF

t^T

) does not depend on the choice of'. Moreover,
observe that for different choices ofT the corresponding measuresP � coincide on the�-
field F

T

with the smallest indexT . The independence of� follows from Statement 1 in
Lemma 3.29, fromu0

�

(y) = u

0

1

(�y) and the definition ofN in Theorem 3.36.
3. Since the definition of' on the open intervals beween neighbouring points of� does

not affect its local utility, we may choose' �-discrete with'
0

= 0. By Lemma A.1,' is
locally bounded. Let us assume� = N

� for ease of notation. Firstly, observe thatN is a
discrete local martingale. Therefore,E (N) is a discrete local martingale as well. Since it is
non-negative, it is a supermartingale (cf. Jacod (1979), (5.17)) and in particular integrable.
By JS, p.15 this implies thatE (N) is a martingale. Fixi 2 f0; : : : ; lg. If Zi
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= 1

�

(t). The claim now follows directly

from application of Jacod (1979), (8.44) toE (N).
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5. Relative toP �, the local martingaleZ � Z

0

can be decomposed asZT

� Z

0

=

Z

c;�

+

R

x(�� �

�

)(ds; dx), whereZc;� denotes theP �-continuous martingale part ofZ and
�

� theP �-compensator of�. From Girsanov's theorem (cf. Theorem 2.26), we conclude that
hZ

c;�;i

; Z

c;�;i

i

t

=

R

t

0

c

ii

s

ds for i = 0; : : : ; l. The integrability condition in Remark 5 implies
thatZc;�;i are square-integrableP �-martingales on[0; T ]. Also by Girsanov's theorem we
have that

Z

[0;T ]�R

n+1

(jxj

2

^ jxj) �

�

(dt; dx) =

Z

T

0

Z

(jxj

2

^ jxj)u

0

�

('

t

� x)F

t

(dx) dt

� sup

y2R

ju

0

�

(y)j

Z

T

0

Z

(jxj

2

^ jxj)F

t

(dx) dt:

The second condition in Remark 5 and Proposition 2.8 yield thatx

i

� (���

�

) is a uniformly
integrableP �-martingale on[0; T ] for i = 0; : : : ; l.

6. This follows immediately by skipping the third, fourth and eighth step in the proof of
Theorem 3.36. �

PROOF OFCOROLLARY 3.37. Condition 1 in Theorem 3.36 holds by Theorem 3.28. For
Conditions 2–4, cf. Remark 3. The shape ofdP

�

dP

follows from JS, I.4.63. �

PROOF OF THE REMARK. Firstly, observe thatK
t

= P

�Z

t

jF

t�1 by Lemma 2.20. The ex-
pression forP �

(AjF

t�1

) follows as Statement 3 in Proposition 1.6. �

PROOF OFCOROLLARY 3.38. This has already been shown in the second step of the proof
of Theorem 3.36. �

3.5 Price Regions

As in Subsections 1.2.5 and 1.2.6, we now want to relax the assumption that non-speculators
are not present in the derivative market in order to obtain reasonable price regions and
improved derivative models. As in Chapter 1, we will introduce two notions of supply-
consistent prices. The first one leads to price regions and models that are intuitive from an
economic point of view but lead to difficulties on the mathematical side. These problems
will be relaxed by defining approximate prices, although at the expense of a weaker theoret-
ical foundation. In the following two sections we will work exclusively withstandard utility
functions (but cf. Remark 4 in Section 3.6). The general setting is as in the previous section,
i.e. we are given underlyings0; : : : ; l and derivativesl+1; : : : ; n at maturity. As before, we
assume that there are many speculators in the market who all trade withu

�

-optimal strate-
gies for different values of�. By Lemma 3.29 the union of all these portfolios is again a
u

�

-optimal strategy for some� > 0. Contrary to the previous section, we do not assume that
this union portfolio contains no derivatives. Instead, we suppose that it contains constantly
�

i

2 R shares of derivativei for i = l + 1; : : : ; n. This implies that their price processes
have to be(�; �l+1

; : : : ; �

n

)-consistent in the sense of the following
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Definition 3.40 Let � > 0, �l+1

; : : : ; �

n

2 R. We call stochastic processesZ l+1

; : : : ; Z

n

(�; �

l+1

; : : : ; �

n

)-consistentfor the derivativesl + 1; : : : ; n if the following conditions hold.

1. Z = (Z

0

; : : : ; Z

n

) is an extended Grigelionis process.

2. Zi

t

= X

i

P -almost surely for anyt � t

i

and anyi 2 fl + 1; : : : ; ng.

3. The convexly restricted setM := f' 2 A : '

i

= �

i for any i 2 fl + 1; : : : ; ngg

contains au
�

-optimal strategy' for A.

Remarks.

1. Since(�; �l+1

; : : : ; �

n

)-consistent prices are identical to(1; ��l+1

; : : : ; ��

n

)-consistent
processes, it usually suffices to consider the case� = 1.

2. Neutral price processes are(�; 0; : : : ; 0)-consistent price processes (for any� > 0)
and vice versa.

The following lemma means that(�; �l+1

; : : : ; �

n

)-consistent prices are “usually” condi-
tional expectations under some equivalent martingale measure that is given in terms of a
u

�

-optimal strategy for the speculator.

Lemma 3.41 Let T := supft

l+1

; : : : ; t

n

g and fix� > 0, �l+1

; : : : ; �

n

2 R. Assume that
Z

l+1

; : : : ; Z

n are(�; �l+1

; : : : ; �

n

)-consistent price processes for the derivativesl+1; : : : ; n

and that the strategy' in Definition 3.40 can be chosenP -almost surely pathwise bounded
on [0; T ]. Define the local martingaleL := E (N) by

N

t

= ��

Z

t^T

0

'

s

� dZ

c

s

+

Z

[0;t^T ]�R

n+1

�

1

�

c

(s)(u

0

�

('

s

� x)� 1) + 1

�

(s)

u

0

�

('

s

� x)

R

u

0

�

('

s

� ex)K

s

(dex)

�

(�� �)(ds; dx);

whereZ = (Z

0

; : : : ; Z

n

) and the random measures�; � are defined as in Theorem 3.36, but
relative toZ instead ofZ, andK denotes the last component in the extended characteristics
of Z. Suppose thatLT is a martingale so that we can define a probability measureP

� by
dP

�

dP

:= L

T

. ThenZ � Z

0

is aP �-local martingale. IfZ is aP �-martingale, then obviously

Z

i

t

= E

�

(X

i

jF

t^T

) for anyt 2 R

+

(3.18)

and anyi 2 fl + 1; : : : ; ng, whereE� denotes conditional expectation with respect toP

�.

In Subsection 1.2.5 we define price regions as the set of all price processes that correspond
to moderate values of external supply�l+1

; : : : ; �

n. This is repeated here.

Definition 3.42 Fix � > 0 and asupply boundr � 0. We say that processesZ l+1

; : : : ; Z

n

belong to the�r-price regionif they are(�; �l+1

; : : : ; �

n

)-consistent derivative price pro-
cesses for some�l+1

; : : : ; �

n satisfyingj�ij � r for i = l + 1; : : : ; n.
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Remark. By Remark 1 the�r-price region only depends on the product�r.

Although the previous lemma looks similar to Theorem 3.36 formally, the analogy is
very limited. In Lemma 3.41 we do not show that(�; �

l+1

; : : : ; �

n

)-consistent price pro-
cesses really exist. Moreover, the density processL does not help in computing the deriva-
tive prices, since it depends on the unknown processesZ

l+1

; : : : Z

n. We will use the latter
fact to define an approximate notion of consistency as in Subsection 1.2.5. For both the com-
putation of au

�

-optimal strategy forM, as well as for the definition ofL, we substitute the
known neutral derivative prices as an approximation for the unknown consistent processes.
More precisely, we proceed as follows.

1. LetT := supft

l+1

; : : : ; t

n

g and fix� > 0, �l+1

; : : : ; �

n

2 R.

2. Assume that the conditions in Theorem 3.36 or Corollary 3.37 hold. There are then
unique neutral price processesZ l+1

; : : : ; Z

n.

3. Let' 2M := f' 2 A : '

i

= �

i for anyi 2 fl+ 1; : : : ; ngg be au
�

-optimal strategy
forM in the marketZ = (Z

0

; : : : ; Z

n

). Such a strategy exists by Theorem 3.26 and
can be computed using Corollary 3.23. W.l.o.g., let'

0

:= (0; : : : ; 0; �

l+1

; : : : ; �

n

).

4. Assume that' is P -almost surely pathwise bounded on[0; T ]. This is no restriction
if the market is�-discrete (cf. Remark 3 following Theorem 3.36).

5. Now define the local martingaleeL := E (

e

N) by

e

N

t

= ��

Z

t^T

0

'

s

� dZ

c

s

+

Z

[0;t^T ]�R

n+1

�

1

�

c

(s)(u

0

�

('

s

� x)� 1)

+ 1

�

(s)

u

0

�

('

s

� x)

R

u

0

�

('

s

� ex)K

s

(dex)

�

(�� �)(ds; dx);

whereZ = (Z

0

; : : : ; Z

n

) and the random measures�; � are defined as in Theorem
3.36 but relative toZ instead ofZ, andK denotes the last component in the extended
characteristics ofZ.

6. Assume thateLT is a martingale (This holds automatically if the market is�-discrete,
cf. Remark 3 following Theorem 3.36). Define the probability measuree

P by d

e

P

dP

:=

e

L

T

.

7. Assume that theeP -local martingaleZT

� Z

0

is a eP -martingale, whereZ = (Z

0

; : : : ;

Z

l

). This holds automatically in�-discrete markets, ifZi

�Z

i

0

is bounded from below
by a constantD 2 R for i = 0; : : : ; l (cf. Remark 3 following Theorem 3.36).

8. Define processeseZ l+1

; : : : ;

e

Z

n by taking a càdlàg version ofeZi

t

:=

e

E(X

i

jF

t^T

) for
anyt 2 R

+

, whereeE denotes expectation with respect toeP .
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Definition 3.43 eZ l+1

; : : : ;

e

Z

n will be called(�; �l+1

; : : : ; �

n

)-approximate price processes
for the derivativesl + 1; : : : ; n.

Lemma 3.44 Let eZ l+1

; : : : ;

e

Z

n be (�; �

l+1

; : : : ; �

n

)-approximate price processes for the
derivativesl + 1; : : : ; n. Then the marketeZ = (Z

0

; : : : ; Z

l

;

e

Z

l+1

; : : : ;

e

Z

n

) is an extended
Grigelionis process and allows no arbitrage on[0; T ]. Moreover, we haveZi

t

= X

i

P -
almost surely for anyt � t

i

and anyi 2 fl + 1; : : : ; ng.

Remarks.

1. As for consistent prices we have that(�; �

l+1

; : : : ; �

n

)-approximate prices are identi-
cal to (1; ��l+1

; : : : ; ��

n

)-approximate prices. Moreover, neutral price processes co-
incide with(�; 0; : : : ; 0)-approximate processes (for any� > 0).

2. The key idea in Definition 3.43 is to use neutral price processes as a zeroth approxi-
mation to consistent prices in steps 3 and 5. This suggests repeating steps 3 to8, but
this time using the (presumably) better first approximationeZ l+1

; : : : ;

e

Z

n instead of
Z

l+1

; : : : ; Z

n. It would be interesting to know whether an iteration of this procedure
leads, under suitable conditions, to(�; �l+1

; : : : ; �

n

)-consistent prices in the limit.

We now define approximate price regions as in Subsection 1.2.5.

Definition 3.45 Fix � > 0 and r � 0. We say that processesZ l+1

; : : : ; Z

n belong to
theapproximate�r-price region if they are(�; �l+1

; : : : ; �

n

)-approximate derivative price
processes for some�l+1

; : : : ; �

n satisfyingj�ij � r for i = l + 1; : : : ; n.

Let us make a final remark concerning(�; �l+1

; : : : ; �

n

)-consistent and -approximate
price processes inN� -discrete markets.

Remark. In the remark following Theorem 3.37 we observe that the transition probabilities
for the pricing measureP � are given by

P

�

(AjF

t�1

) = E

�

u

0

�

('

t

��Z

t

)

E(u

0

�

('

t

��Z

t

)jF

t�1

)

1

A

�

�

�

F

t�1

�

(3.19)

for anyt 2 N

� , A 2 F
t

, where'
t

satisfies
Z

x

i

u

0

�

('

t

� x)P

�Z

t

jF

t�1

(dx) = 0 for i = 0; : : : ; l: (3.20)

Similar equations hold for the pricing measures in this section. Recall that oneobtains
the equivalent martingale measure leading to neutral derivative prices ifZ in the Equations
(3.19) and (3.20) denotes the underlyings' price processZ = (Z

0

; : : : ; Z

l

).
Now let Z instead denote the joint processZ = (Z

0

; : : : ; Z

l

; Z

l+1

; : : : ; Z

n

), where
Z

l+1

; : : : ; Z

n are the neutral price processes from Section 3.4. Moreover, fix'

i

t

= �

i for any
i 2 fl + 1; : : : ; ng, t 2 N

� . Then Equations (3.19) and (3.20) yield the probability measure
e

P leading to(�; �l+1

; : : : ; �

n

)-approximate price processes in Definition 3.43.
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Finally, one may replaceZ again with a joint processZ = (Z

0

; : : : ; Z

l

; Z

l+1

; : : : ; Z

n

),
but this time with(�; �l+1

; : : : ; �

n

)-consistent price processesZ l+1

; : : : ; Z

n. We fix again
'

i

t

= �

i for anyi 2 fl+1; : : : ; ng, t 2 N

� . With this choice, the Equations (3.19) and (3.20)
yield the pricing measureP � in Lemma 3.41, leading to(�; �l+1

; : : : ; �

n

)-consistent price
processes.

Proofs

PROOF OF LEMMA 3.41. Firstly, note that (RC 2) holds due to Corollary 3.27. More-
over, one may choose'

0

= (0; : : : ; 0; �

l+1

; : : : ; �

n

) w.l.o.g. With that choice, the pathwise
boundedness of'T implies that it is locally bounded (cf. Lemma A.1). In order to establish
the claim, just apply the first two steps of the proof of Theorem 3.36 toZ instead ofZ. We
obtain thatP � is a well-defined probability measure equivalent toP and thatZ � Z

0

is a
P

�-local martingale. IfZ is aP �-martingale, Equation (3.18) clearly holds. �

PROOF OFLEMMA 3.44. Firstly, note thateN and eP are well-defined (cf. the first two steps
of the proof of Theorem 3.36). From the boundedness ofu

0

�

as well as Lemma 2.27 and
Condition 3 in the remark following Theorem 2.26, it follows thatZ

0

; : : : ; Z

n are eP -special
semimartingales. Application of Theorem 2.26 toZ = (Z

0

; : : : ; Z

n

) yields that

e

b

i

t

= b

i

t

� �c

i�

t

� '

t

+

Z

x

i

(u

0

�

('

t

� x)� 1)F

t

(dx);

e

K

t

(G) =

Z

1

G

(x)

u

0

�

('

t

� x)

R

u

0

�

('

t

� ex)K

t

(dex)

K

t

(dx)

for anyi 2 f0; : : : ; ng, t 2 [0; T ] and hence

�

e

B

i

t

=

Z

x

i

e

K

t

(dx) =

1

R

u

0

�

('

t

� ex)K

t

(dex)

Z

x

i

u

0

�

('

t

� x)K

t

(dx)

for anyi 2 f0; : : : ; ng, t 2 �\[0; T ], where(�; PZ

0

; b; c; F ;K)

E and(�; PZ

0

;

e

b; c;

e

F ;

e

K)

E

denote theP - resp. eP -characteristics ofZ and eB is the predictable part of finite variation
of the eP -special semimartingaleZ. From theu

�

-optimality of ' and Corollary 3.23, we
conclude that( eBi

)

T

= 0 for i = 0; : : : ; l (but not necessarily fori = l + 1; : : : ; n). This
implies thatZT

� Z

0

is a eP -local martingale. TheeP -integrability of the random variables
X

i follows as in the third step of the proof of Theorem 3.36. By definitioneZ l+1

; : : : ;

e

Z

n

are eP -martingales. As in the fourth and the fifth step of the proof of Theorem 3.36 we have
that eZ = (Z

0

; : : : ; Z

l

;

e

Z

l+1

; : : : ;

e

Z

n

) is an extended Grigelionis process relative toeP . From
Lemma 3.7 we conclude thateZT allows no arbitrage. �

PROOF OF THE REMARK. This follows as before from Corollary 3.23 and from the proof
of Statement 3 in Proposition 1.6. �
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3.6 Improved Derivative Models

As in Subsection 1.2.6, we now want to use consistent and approximate prices to construct
models that are consistent with initially observed market prices. The general setting is as in
the previous two sections, i.e. we are given underlyings0; : : : ; l and derivativesl+ 1; : : : ; n

at maturity. Moreover, we assume thatF
0

is the trivial�-field f?;
g or itsP -completion
and that the initial pricespl+1

; : : : ; p

n of the derivatives are known. As before, we work with
standard utility functionsu

�

.

Definition 3.46 Stochastic processesZ l+1

; : : : ; Z

n are called(pl+1

; : : : ; p

n

)-consistentfor
the derivativesl + 1; : : : ; n if the following conditions hold.

1. Z l+1

; : : : ; Z

n are(�; �l+1

; : : : ; �

n

)-consistent price processes for the derivativesl+1;

: : : ; n for some� > 0, �l+1

; : : : ; �

n

2 R. (By Remark 1 following Definition 3.40
one can in fact choose any�, e.g.� = 1.)

2. Zi

0

= p

i

P -almost surely fori = l + 1; : : : ; n.

As indicated in the previous section, we are usually unable to compute consistent prices ex-
cept in very simple models. Since in practice one may still prefer to workwith a model that
does not contradict the initially observed derivative prices, we use approximately consistent
prices instead.

Definition 3.47 We call stochastic processesZ l+1

; : : : ; Z

n approximately(pl+1

; : : : ; p

n

)-
consistentfor the derivativesl + 1; : : : ; n if the following conditions hold.

1. Z l+1

; : : : ; Z

n are(�; �l+1

; : : : ; �

n

)-approximate price processes for the derivativesl+

1; : : : ; n for some� > 0, �l+1

; : : : ; �

n

2 R. (By Remark 1 following Lemma 3.44 one
can in fact choose any�, e.g.� = 1.)

2. Zi

0

= p

i

P -almost surely fori = l + 1; : : : ; n.

Remarks.

1. Note that, in general, (approximately)(p

l+1

; : : : ; p

n

)-consistent prices do not exist if
the initial prices(pl+1

; : : : ; p

n

) are not consistent with the absence of arbitrage.

2. As any reader may observe, the previous two sections leave many open questions, e.g.
concerning existence, uniqueness and numerical computation of consistent prices (for
details cf. Subsections 1.2.5 and 1.2.6).

3. In Definitions 3.40 and 3.43 we may replace the constant supply�

l+1

; : : : ; �

n with
a predictable supply process(�l+1

t

; : : : ; �

n

t

)

t2R

+

. In this way we can obtain settings
with stochastic external supply. We refer to Subsection 1.2.6 for a discussion of how
models of this type can be used in practice.

4. As before, one may replace the standard functionsu

�

in the previous two sections
with some other utility function.
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3.7 American Options

Our aim is to extend the approach in Section 3.4 to markets where some of the deriva-
tives are American options. The setting is as follows. The underlyings0; : : : ; l are given
by their discounted price processesZ = (Z

0

; : : : ; Z

l

) on the filtered probability space
(
;F; (F

t

)

t2R

+

; P ). Z is assumed to be an extended Grigelionis process that meets inte-
grability condition (RC 1' ). As in Section 3.4, derivativesl+1; : : : ; k are given by theirF

t

i

-
measurable discounted terminal priceX i at timet

i

for i = l+1; : : : ; k. Moreover, the market
contains securitiesk + 1; : : : ; n representingAmerican options. These are characterized by
their respective discounted exercise price processesY

i, where for anyi 2 fk + 1; : : : ; ng,
Y

i is assumed to be aR
+

-valued, càdlàg, adapted process withY i

= (Y

i

)

t

i (i.e. staying
constant aftert

i

) for somet
i

2 R

+

. This is to say that, at any timet 2 R

+

, one may re-
turn the optioni and getY i

t

in exchange. As in Subsection 1.2.7, we have to make some
assumptions to be able to price American options.

1. We base our derivation once more on the condition that the typical speculator has a
zero position in the securitiesl+ 1; : : : ; n. But note that a speculator no longer corre-
sponds to an investor who can choose his portfolio freely in the set of all strategiesA.
When the market price of an American option meets its exercise price, then it is likely
that any trader with a long position in this security will return it. So, speculators may
not be able to maintain a short position in the option beyond this first reasonable exer-
cise time. As long as the market price is still higher than the exercise price, however,
we may safely assume that no trader returns the option, which implies that itsshort
sale is not yet restricted.

2. An American optioni can be exercised at any stopping time�. Hence, an investor
may use it as a substitute for a usual contingent claim with terminal discounted value
Y

i

�

at maturity. In Section 3.4 we define and derive unique neutral prices for this kind
of derivative. For the definition of a corresponding notion for American options, we
assume that the price of these securities is at least as high as the neutral price of the
various implied options of European style.

The following definition takes these aspects into account. As in Section 3.4 wework with
standard utility functionsu

�

.

Definition 3.48 We call the stochastic processesZ l+1

; : : : ; Z

n neutral price processesfor
the derivativesl + 1; : : : ; n if the following conditions hold.

1. Z l+1

; : : : ; Z

n are adapted processes whose paths areP -almost surely càdlàg.

2. Zi

t

= X

i

P -almost surely for anyt � t

i

and anyi 2 fl + 1; : : : ; kg.

3. If �
k+1

; : : : ; �

n

are bounded stopping times and if(

e

Z

k+1

; : : : ;

e

Z

n

) are neutral price
processes (in the sense of Definition 3.35) for derivativesk+1; : : : ; nwith discounted
terminal valueY i

�

i

for i = k + 1; : : : ; n, then( eZi

)

�

i

� (Z

i

)

�

i up to an evanescent set
for i = k + 1; : : : ; n.



128 Chapter 3. Markets, Strategies, Prices

4. For anyt
0

2 R

+

, i 2 fk + 1; : : : ; ng, define thenext reasonable exercise time�
t

0

:=

�

1

t

0

;i

^ �

2

t

0

;i

, where� 1
t

0

;i

:= infft > t

0

: Z

i

t�

= Y

i

t�

g and� 2
t

0

;i

:= infft � t

0

: Z

i

t

= Y

i

t

g.
Moreover, define for anyi 2 fk + 1; : : : ; ng and anyt 2 [t

0

;1)

Z

i

t

:=

8

>

<

>

:

Z

i

t

if t < �

t

0

;i

or t = t

0

Z

i

�

t

0

;i

�

if t
0

6= t � �

t

0

;i

andZi

�

t

0

;i

�

= Y

i

�

t

0

;i

�

Z

i

�

t

0

;i

if t
0

6= t � �

t

0

;i

andZi

�

t

0

;i

�

6= Y

i

�

t

0

;i

�

(and henceZi

�

t

0

;i

= Y

i

�

t

0

;i

):

Then we have

(a) �
t

0

;i

� t

0

_ t

i

for anyt
0

2 R

+

and anyi 2 fk + 1; : : : ; ng.

(b) The market(Z
t

)

t2[t

0

;1)

= (Z

0

t

; : : : ; Z

k

t

; Z

k+1

t

; : : : ; Z

n

t

)

t2[t

0

;1)

is an extended
Grigelionis process on(
;F; (F

t

)

t2[t

0

;1)

; P ) that allows no arbitrage, and the
convexly restricted setM := f' 2 A : '

i

= 0 for any i 2 fl + 1; : : : ; ngg

contains au
�

-optimal strategy forA.

Remarks.

1. Strictly speaking, we have defined extended Grigelionis processes, strategies etc. only
on a stochastic basis with index setR

+

. Nevertheless, it should be clear what we mean
by the corresponding notions on[t

0

;1) in Condition 4 of the previous definition.

2. The conventionY i

t

= Y

i

t

i

(instead of, e.g.Y i

t

= 0) for any t > t

i

is made for math-
ematical ease. Economically it means that, at the last possible exercise timet

i

, the
option is automatically converted intoY i

t

i

units of the numeraire and hence practically
vanishes from the market.

3. At first glance it may seem more intuitive to define the next reasonable exercise time
as infft � t

0

: Z

i

t

= Y

i

t

g. However, in continuous-time one can easily construct
examples where the market price comes arbitrarily close to the exercise price (i.e.
Z

i

t�

= Y

i

t�

for somet), but does not really reach it before expiration.

4. Condition 4a in Definition 3.48 means that the option reaches or has already reached
its terminal valueY i

t

i

at timet
i

.

5. Z
i

stands for the option that is exercised at the next reasonable time and converted into
shares of the numeraire. In contrast toZi, this security can be held short even when
the option has vanished from the market by early exercise. Therefore the condition
4b, which corresponds to a zero position in the derivatives for a speculator facing no
short sale restrictions, makes sense for the securitiesZ

i

, i = k + 1; : : : ; n.

The following two theorems correspond to Theorem 3.36 and Corollary 3.37.

Theorem 3.49 LetT := supft

l+1

: : : ; t

n

g and fix� > 0 (e.g.� = 1). Assume that

1. Conditions 1–3 and 5 in Theorem 3.36 hold.
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2. E�

(sup

t2[0;T ]

jZ

t

� Z

0

j) <1, whereP � is defined in Theorem 3.36.

3. For anyi 2 fl + 1; : : : ; kg there exist�; � 2 S,M 2 R such that

�M +

Z

T

0

�

s

� dZ

s

� X

i

�M +

Z

T

0

�

s

� dZ

s

:

For anyi 2 fk + 1; : : : ; ng there exist� 2 S,M 2 R such that for anyt 2 [0; T ] we
have

0 � Y

i

t

�M +

Z

t

0

�

s

� dZ

s

:

Then there exist up to indistinguishability unique neutral price processes for the derivatives
l + 1; : : : ; n. For i 2 fl + 1; : : : ; kg these are the processes in Theorem 3.36. Fori 2

fk + 1; : : : ; ng we have

1. Zi is the smallestP �-supermartingale dominatingY i (i.e.Zi is aP �-supermartingale,
we haveZi

t

� Y

i

t

P

�-almost surely for anyt 2 R

+

, and if eZi is another such process,
then we haveeZi

t

� Z

i

t

P

�-almost surely for anyt 2 R

+

).

2. Zi

t

= ess supfE

�

T

(Y

i

�

jF

t

) : � [t;1)-valued stopping timeg P -almost surely for any
t 2 R

+

.

Corollary 3.50 LetT := supft

l+1

; : : : ; t

n

g and fix� > 0 (e.g.� = 1). Assume that

1. Condition 1 in Corollary 3.37 holds.

2. For anyi 2 fl + 1; : : : ; kg there exist�; � 2 S,M 2 R such that

�M +

Z

T

0

�

s

� dZ

s

� X

i

�M +

Z

T

0

�

s

� dZ

s

:

For anyi 2 fk + 1; : : : ; ng there exist� 2 S,M 2 R such that for anyt 2 [0; T ] we
have

0 � Y

i

t

�M +

Z

t

0

�

s

� dZ

s

:

DefineP � as in Corollary 3.37. Then the assertion in Theorem 3.49 holds. Moreover, we
have

Z

i

t

=

(

Y

i

t

for t � T

maxfY

i

s

j�1

; E

�

(Z

i

s

j

jF

s

j�1

)g for s
j�1

� t < s

j

for any i 2 fk + 1; : : : ; ng, where0 = s

0

� s

1

� : : : � s

m

= T with fs
0

; : : : ; s

m

g =

[0; T ] \ (� [ f0; Tg).
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Remarks.

1. The processesZi in Theorem 3.49 are called theSnell envelopeof Y i. It is well-known
that in complete models the unique fair price processes are also given in terms of a
Snell envelope under the equivalent martingale measure (cf. Lamberton & Lapeyre
(1996)). In view of Statement 2 in Theorem 3.49 and the complicated Definition 3.48,
one may wonder why we have notdefinedneutral American option prices to be the
supremum of all neutral European option price processes with terminal valueY

i

�

for
arbitrary stopping times�. However, this easier concept already implies by definition
that an American option is not worth more than the best of its implied European style
derivatives (i.e. thepossibilityto choose the exercise time has no value in itself). We
are interested in whether this fact can be deduced from weaker assumptions.There-
fore, we prefer the seemingly more awkward Definition 3.48.

2. Most remarks in Section 3.4 carry over to this slightly more general setting.

3. It is an open question whether one can also define price regions and improved deriva-
tive models for American options in the spirit of Sections 3.5 and 3.6.

Proofs

Proposition 3.51 LetX be a càdlàg adapted process,t
0

2 R

+

, � := infft > t

0

: X

t�

=

0g, A := fX

��

= 0 andX
t

0

6= 0g. Then�
A

= �1

A

+11

A

C is a predictable stopping time.
(More precisely,�

A

is indistinguishable from a predictable stopping time.)

PROOF. By Jacod (1979), (1.1) we may assume that the filtration is complete. Note that
�

A

= infft 2 R

+

: 1

fX

t

0

6=0g

1

(t

0

;1)

6= 0 andX��

t�

= 0g. Moreover,(!; t) 2 [�

A

] implies
X

��

t�

= X

��

= 0 andt > t

0

. Therefore,(!; t) 2 f1
fX

t

0

6=0g

1

(t

0

;1)

6= 0 andX��

t�

= 0g 2 P.
By JS, I.2.27 and JS, I.2.13 we have that�

A

is a predictable stopping time. �

PROOF OFTHEOREM 3.49. Here and also occasionally in other proofs, we apply results
stated only forP -complete filtered probability spaces. Following Jacod (1979), (1.1), the
statements nevertheless hold in incomplete spaces as well.

First step: DefineZ l+1

; : : : ; Z

k by Equation (3.11) andZk+1

; : : : ; Z

n by Statement 1.
Their existence follows from Fakeev (1970), Theorem 2. (Strictly speaking, Fakeev (1970)
yields only the existence of minimal right-continuous supermartingales, whereas inJS (and
thus for us) supermartingales are supposed to be càdlàg. In the second step we show that
Z

k+1

; : : : ; Z

n have left-hand limits as well.) Since by assumptionY i

t

= Y

i

T

for any i 2
fk + 1; : : : ; ng, t 2 [T;1), Fakeev (1970), Theorem 1 yields that

Z

i

t

= ess supfE

�

(Y

i

�

jF

t

) : � [t;1)-valued stopping timeg

= ess supfE

�

(Y

i

�

jF

t

) : � [t; T ]-valued stopping timeg

P -almost surely for anyt 2 [0; T ].
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Second step:By definitionZ l+1

; : : : ; Z

k are adapted and càdlàg. In addition,Z

k+1

; : : : ;

Z

n are also adapted and right-continuous. From the proof of Theorem 2 in Fakeev (1970),
we conclude that the mappingt 7! E

�

(Z

i

t

) is right-continuous fori = k + 1; : : : ; n. By
Métivier (1982), Corollary 10.10 and the right-continuity of theZi, this implies thatP �-
almost all paths ofZk+1

; : : : ; Z

n are càdlàg. The second condition in Definition 3.48 follows
from Theorem 3.36.

Third step:SinceY i

�

i

meets Condition 6 in Theorem 3.36, we have that(

e

Z

k+1

; : : : ;

e

Z

n

)

in Condition 3 of Definition 3.48 is uniquely given byeZi

t

= E

�

(Y

i

�

i

jF

T^t

) for anyt 2 R

+

,
i 2 fk + 1; : : : ; ng. (W.l.o.g., we have assumed that�

i

� T for i = k + 1; : : : ; n.) Fix
i 2 fk + 1; : : : ; ng. From the definition and Doob's stopping theorem (cf. JS, I.1.39) we
have thateZi

�

i

= Y

i

�

i

� Z

i

�

i

and hence( eZi

)

�

i

t

= E

�

(

e

Z

i

�

i

jF

T^t

) � E

�

(Z

i

�

i

jF

T^t

) � (Z

i

)

�

i

t

P

�-almost surely for anyt 2 R

+

, where the latter inequality follows again from Doob's
stopping theorem. Thus we have shown Condition 3 in Definition 3.48.

Fourth step:We will now show that(Z
i

t

)

t2[t

0

;1)

is aP �-martingale for anyi 2 fk +

1; : : : ; ng, t
0

2 R

+

. Fix i; t
0

. For anym 2 N , let us define the stopping time�
m

:= infft >

t

0

: Z

i

t

� Y

i

t

+ 1=mg. Form ! 1 we have�
m

" �

t

0

;i

P -almost surely. Using Condition
2 in Theorem 3.49, one easily shows thatE

�

(sup

t2[0;T ]

jM +

R

t

0

�

s

� dZ

s

j) < 1 for any
M 2 R, � 2 S. Since the processY i is dominated by a process of the formM +

R

�

0

�

s

�dZ

T

s

,
it follows thatE�

(sup

t2[0;T ]

jY

i

t

j) < 1. From Fakeev (1970), Equation (24) it follows that
((Z

i

)

�

m

t

)

t2[t

0

;1)

is aP �-martingale for anym 2 N . Using Doob's stopping theorem (cf. JS,
I.1.39), we obtain that(Zi

�

m

)

m2N

is a uniformly integrable(F
�

m

)

m2N

-martingale relative to
P

�. From the martingale convergence theorem (cf. Bauer (1978), Korollar 60.3), we can
now conclude that(Zi

�

m

)

m2N

convergesP �-almost surely and inL1

(P

�

) to a�([
m2N

F

�

m

)-
measurable random variableR. LetA := fZ

i

�

t

0

;i

�

= Y

i

�

t

0

;i

�

g \ fZ

i

t

0

6= Y

i

t

0

g. SinceZi

; Y

i

are càdlàg, we haveR = Z

i

�

t

0

;i

�

1

A

+ Z

i

�

t

0

;i

1

A

C = Z

i

�

t

0

;i

: For anyt 2 [t

0

;1) this implies
that (with the convention]�

�1

; �

0

] := [�

0

])

Z

i

t

=

X

m2N

(Z

i

)

�

m

t

1

]�

m�1

;�

m

]

(t) +R1

([

m2N

[0;�

m

])

C (t)

=

X

m2N

E

�

(E

�

(RjF

�

m

)jF

t

)1

]�

m�1

;�

m

]

(t) + E

�

(RjF

t

)1

([

m2N

[0;�

m

])

C(t):

Doob's stopping theorem (cf. JS, I.1.39) yields thatE

�

(E

�

(RjF

�

m

)jF

t

)1

]�

m�1

;�

m

]

(t) =E

�

(R

jF

t

) 1

]�

m�1

;�

m

]

(t) P -almost surely. ThereforeZ
i

t

= E(RjF

t

), which implies that(Z
i

t

)

t2[t

0

;1)

is aP �-martingale.
Fifth step: Let M; � be as in Condition 3 in Theorem 3.49, chosen relative toY

i. De-
note �

A

:= (�

t

0

;i

)

A

. Then�
A

:= (�

1

t

0

;i

)

A

1

\A

2

for A
1

:= fZ

i

�

1

t

0

;i

�

= Y

i

�

1

t

0

;i

�

g \ fZ

i

t

0

6=

Y

i

t

0

g andA
2

:= f�

1

t

0

;i

� �

2

t

0

;i

g 2 F

�

1

t

0

;i�

. By Proposition 3.51 and JS, I.2.10 it follows

that �
A

is a predictable stopping time. We may therefore define the predictable processe

�

and the local martingaleU by e� := �(1

[0;�

t

0

;i

]

� 1

[�

A

]

) andU :=

R

�

0

e

�

s

� dZ

T

s

. Note that

j

R

�

0

(

e

�1

[�

A

]

) �dZ

T

s

j � j

e

�

�

A

jjZ

T

�

A

�Z

T

�

A

�

j. FromE

�

(sup

t2R

+

jZ

T

�Z

0

j) <1 it easily follows
thatE�

(sup

t2R

+

jU

t

j < 1), which implies thatU is aP �-martingale (cf. JS, I.1.47). Note
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thatZ
i

T

= Y

i

�

t

0

;i�

1

A

+ Y

i

�

t

0

;i

1

A

C
� M +

R

�

t

0

;i

0

�

s

� dZ

T

s

� 1

A

�(

R

�

0

�

s

� dZ

T

s

)

�

t

0

;i

= M + U

T

.

Since(Z
i

t

)

t2[t

0

;1)

andU are bothP �-martingales, it follows that0 � Z

i

t

� M + U

t

for any

t � t

0

. From Lemma 2.22 and Proposition 3.39, we conclude thatU and hence(Z
i

t

)

t2[t

0

;1)

is aP -special semimartingale.

Sixth step:As in the fifth step of the proof of Theorem 3.36, it follows that(Z

i

t

)

t2[t

0

;1)

=

(Z

0

t

; : : : ; Z

k

t

; Z

k+1

t

; : : : ; Z

n

t

)

t2[t

0

;1)

is an extended Grigelionis process relative toP . Con-
dition 4b in Definition 3.48 now follows exactly as the sixth step of the proof of Theorem
3.36.

Seventh step:Let eZ l+1

; : : : ;

e

Z

n be another set of neutral price processes for the deriva-
tivesl + 1; : : : ; n. Fix t

0

2 R

+

. Moreover, fixi 2 fk + 1; : : : ; ng for the moment and let�
be a[t

0

; T ]-valued stopping time. Since0 � Y

i

�

� M +

R

T

0

�

s

1

[0;�]

(s) � dZ

s

, Theorem 3.36
yields that(E�

(Y

i

�

jF

t

))

t2R

+

is a neutral price process for a derivative with terminal value
Y

i

�

. By Condition 2 we haveeZi

t

0

� E

�

(Y

i

�

jF

t

0

) P -almost surely. SinceZi

t

0

is the essential
upper bound of random variables of the typeE

�

(Y

i

�

jF

t

0

), it follows that eZi

t

0

� Z

i

t

0

P -almost
surely.

Eighth step: Fix t

0

2 R

+

. By Condition 4b there is au
�

-optimal strategy forA of
the form e' = (e'

0

; : : : ; e'

l

; 0; : : : ; 0) for the market( eZ
t

)

t2[t

0

;1)

= (Z

0

t

; : : : ; Z

l

t

;

e

Z

l+1

t

; : : : ;

e

Z

n

t

)

t2[t

0

;1)

. Since the local utility ofe' in the market( eZ
t

)

t2[t

0

;1)

is the same as the lo-
cal utility of (e'0

; : : : ; e'

l

) in the market(Z
t

)

t2[t

0

;1)

and furthermore the local utility of
all optimal strategies coincides, we may assume that(e'

0

; : : : ; e'

l

) = ('

0

; : : : ; '

l

), where
('

0

; : : : ; '

l

) is the strategy used for the definition ofP � in Theorem 3.36. Applying Corol-
lary 3.23, it is easy to show that('0

; : : : ; '

l

; 0; : : : ; 0) is also au
�

-optimal strategy forA in
the market(Z0

t

; : : : ; Z

l

t

;

e

Z

l+1

t

; : : : ;

e

Z

k

t

; (

e

Z

k+1

)

�

k+1

t

; : : : ; (

e

Z

n

)

�

n

t

)

t2[t

0

;1)

, where�
k+1

; : : : ; �

n

are arbitrary stopping times. Fix" > 0. For anyi 2 fk + 1; : : : ; ng define the stopping
time �

i

:= infft � t

0

:

e

Z

i

t

� Y

i

t

+

1

"

g. The third condition in Theorem 3.49 yields that

0 � (

e

Z

i

)

�

i

T

� (Y

i

)

�

i

T

+

1

"

�

1

"

+M +

R

T

0

1

[0;�

i

]

(s)�

s

� dZ

s

for someM 2 R, � 2 S. A
simple arbitrage argument shows that0 � (

e

Z

i

)

�

i

t

�

1

"

+M +

R

t

0

1

[0;�

i

]

(s)�

s

� dZ

s

for anyt 2
[t

0

; T ]. Since the right-hand side is aP -special semimartingale, Proposition 3.39 yields that
((

e

Z

i

)

�

i

t

)

t2[t

0

;1)

is aP -special semimartingale as well fori 2 fk+1; : : : ; ng. By basically the
same argumentation as in the eighth step of Theorem 3.36, we conclude that((

e

Z

i

)

�

i

t

)

t2[t

0

;1)

is aP �-martingale. It follows thateZi

t

0

= E

�

((

e

Z

i

)

�

i

T

jF

t

0

) � E

�

((Y

i

)

�

i

T

jF

t

0

) +

1

"

� Z

i

t

0

+

1

"

for i 2 fk + 1; : : : ; ng and eZi

t

0

= E

�

(

e

Z

i

T

jF

t

0

) = E

�

(X

i

T

jF

t

0

) = Z

i

t

0

for i 2 fl + 1; : : : ; kg.
In view of the previous step, the proof is complete. �

PROOF OF COROLLARY 3.50. As in Corollary 3.37, Conditions 1–5 in Theorem 3.36
are met. Furthermore, we haveE�

(sup

t2[0;T ]

jZ

i

t

� Z

i

0

j) �

P

t2[0;T ]\�

E

�

(jZ

i

t

� Z

i

0

j) <1,
which yields the assumptions in Theorem 3.49. The recursion formula for the Snell envelope
can be found in Gihman & Skorohod (1979), Theorem 1.8 (for� = N

� ). �
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3.8 Continuous Time Limits of Discrete Time Models

Any continuous-time market can be converted to discrete-time by restricting the index set
R

+

to "N for some" > 0. By letting " ! 0 the model can be viewed as the limit of
a sequence of discrete-time markets (which are treated in a continuous-time frame by the
embedding in the appendix). In this section we show that under suitable conditions the local
utility and u-optimal strategies also converge to the respective notions in continuous time.
This is satisfactory for two reasons. Firstly, it supports the interpretation of local utility as a
conditional expected utility for an infinitesimal time interval (cf. Lemma 3.16 and Theorem
3.54). Secondly, for numerical computations we may approximate continuous-time markets
by neighbouring discrete models and vice versa. As in Section 3.1 we consider a market
Z = (Z

0

; : : : ; Z

n

) defined on a filtered probability space(
;F; (F
t

)

t2R

+

; P ). We denote
the extended characteristics ofZ by (�; PZ

0

; b; c; F;K)

E. u denotes a utility function.

Definition 3.52 Let� be a discrete subset ofR
+

. For anyt 2 R

+

we denote

t

��

:= supfs 2 � [ f0;1g : s � tg

t

�+

:= inffs 2 � [ f0;1g : s � tg

t

���

:= supfs 2 � [ f0;1g : s < tg

t

�++

:= inffs 2 � [ f0;1g : s > tg

�t

�+

:= t

�++

� t

��

:

We define themesh-sizeof � ask�k := sup

t2R

+

jt� t

��

j.

Definition 3.53 Let � � R

+

be a discrete set. We call�-discretized marketthe stochastic
process(Z�

t

)

t2R

+

on the filtered probability space(
;F; (F�

t

)

t2R

+

; P ), whereF�

t

:= F

t

��

andZ�

t

:= Z

t

�� for anyt 2 R

+

. If Z� is an extended Grigelionis process, then we denote
by (��

; 

�

) = (�

�

; 0) its local utility.

Remark. If Z meets regularity condition (RC 1), thenZ� is an extended Grigelionis pro-
cess. If, in addition, the marketZ allows no arbitrage, then the same is true forZ

�.

Theorem 3.54 Let (�
m

)

m2N

be a sequence of discrete subsets ofR

+

such thatk�
m

k ! 0

for m!1. Assume that the marketZ meets integrability condition (RC 1). Then we have
for any compact setA � R

n+1 :

sup

 2A

j�

�

m

t

�

m

+

( )� �

t

( )j

m!1

�! 0 in L1 for anyt 2 R

+

;

sup

 2A

�

�

�

1

�t

�

m

+

�

�

m

t

�

m

++

( )� 

t

( )

�

�

�

m!1

�! 0 in L1 for �-almost allt 2 R

+

;

where the�-null set in the second statement does not depend on the chosen sequence
(�

m

)

m2N

.
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Remark. In particular, we have that for any 2 R

n+1 ,

�

�

m

t

�

m

+

( )

m!1

�! �

t

( ) in probability for anyt 2 R

+

;

1

�t

�

m

+

�

�

m

t

�

m

++

( )

m!1

�! 

t

( ) in probability for�-almost allt 2 R

+

:

Theorem 3.55 Let (�
m

)

m2N

be a sequence of discrete subsets ofR

+

such thatk�
m

k ! 0

for m ! 1. LetM � R

n be such thatM = f' 2 A : '

t

2 R �M for anyt 2 R

+

g is a
set of strategies as in Theorem 3.22. We make the following assumptions.

1. The marketZ meets the regularity conditions (RC 1), (RC 2).

2. There exists au-optimal strategy forM in the marketZ and in any of the markets
Z

�

m (e.g. by Theorem 3.26). We denote these with' 2M resp.'�

m

2 M. W.l.o.g.,
we assume'0

= 0 and('�

m

)

0

= 0 for anym 2 N (cf. Remark 2 following Definition
3.11).

3. Theu-optimal strategy' is strictly optimalin the following sense.

(a) P -almost surely and for anyt 2 � we have

�

t

('

t

) > �

t

( ) for any 2 (f0g �M) n f'

t

g:

(b) Outside some(P 
 �)-null set we have



t

('

t

) > 

t

( ) for any 2 (f0g �M) n f'

t

g:

Then we have

1. '�

m

t

�

m

+

m!1

�! '

t

in probability for anyt 2 �

2. '�

m

t

�

m

++

m!1

�! '

t

in probability for anyt 2 R

+

outside some�-null set that does not
depend on the chosen sequence(�

m

)

m2N

.

Remarks.

1. Strict optimality is needed to ensure that theu-optimal strategy' is unique. Other-
wise, we cannot hope for convergence.

2. It would be nice to have convergence results for pricing measures (e.g. relative to
the total variation distance, cf. JS Subsection V.4a), neutral prices, consistent prices,
approximate prices, price regions etc. as well. These questions should be addressed
in future research.
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Proofs

PROOF OF THE REMARK. Z� is an adapted�-discrete process. Using Remark 2 in Section
2.4, we may decomposeZ asZ

t

� Z

0

=

R

t

0

b

s

ds+

P

s2�\[0;t]

R

xK

s

(dx) +

R

t

0

1 dZ

c

s

+ x �

(� � �)

t

for any t 2 R

+

. Using regularity condition (RC 1), JS, III.4.5d and Proposition
2.8, we conclude thatZ � Z

0

is uniformly integrable on any interval[0; T ]. In particular,
E(jZ

t

� Z

s

jjF

s

) < 1 P -almost surely for anys; t 2 R

+

with s � t. By Lemma 2.20 and
the following remark this implies thatZ� is an extended Grigelionis process. One easily
sees that any arbitrage in the marketZ

� is also an arbitrage in the marketZ. Hence, the
second claim follows. �

PROOF OFTHEOREM 3.54. First step: Fix t 2 R

+

. By the remark following Definition
3.11 we have that for any 2 R

n+1

+

j�

�

m

t

�

m

+

( )� �

t

( )j = jE(u( � (Z

t

�

m

+ � Z

t

�

m

��))jF

t

�

m

��)� E( ��Z

t

jF

t�

)j

� E(ju( � (Z

t

�

m

+
� Z

t

�

m

��
))� u( ��Z

t

)jjF

t

�

m

��
) (3.21)

+ jE(u( ��Z

t

)jF

t

�

m

��)� E( ��Z

t

jF

t�

)j (3.22)

In the next two steps, we consider the terms (3.21) and (3.22) seperately.
Second step:By the mean value theorem and the Cauchy-Schwarz inequality we have

thatju( �(Z
t

�

m

+�Z

t

�

m

��))�u( ��Z

t

)j � sup

y2R

ju

0

(y)jj jjZ

t

�

m

+�Z

t

�

m

���Z

t

+Z

t�

j.
SinceZ is càdlàg, the right-hand side converges to 0P -almost surely form ! 1. As
Z � Z

0

is uniformly integrable on any bounded interval (cf. the preceding proof), we also
have convergence inL1. This implies thatsup

 2A

E(ju( � (Z

t

�

m

+ � Z

t

�

m

��)) � u( �

�Z

t

)jjF

t

�

m

��) also converges inL1 to 0 form!1.
Third step: Let " > 0 andM := E(�Z

t

). Choose 
1

; : : : ;  

r

2 A such that for
any  2 A, there is a 

i( )

2 f 

1

; : : : ;  

r

g at moste" := "=(3M sup

y2R

ju

0

(y)j) away.
By the martingale convergence theorem (cf. JS, I.1.42) we have that, for any 2 A,
jE(u( ��Z

t

)jF

t�

)�E(u( ��Z

t

)jF

t

�

m

��)j

m!1

�! 0 P -almost surely and inL1. It follows
thatE(jE(u( 

i

��Z

t

)jF

t�

)�E(u( 

i

��Z

t

)jF

t

�

m

��
)j) <

"

3r

for anyi 2 f1; : : : ; rg and any
m large enough. By the mean value theorem we have thatju( ��Z

t

)� u( 

i( )

��Z

t

)j �

e"j�Z

t

j sup

y2R

ju

0

(y)j for any 2 A. Using the triangular inequality, we obtain for suffi-
ciently largem that

E

�

sup

 2A

jE(u( ��Z

t

)jF

t

�

m

��
)� E(u( ��Z

t

)jF

t�

)j

�

� E

�

sup

 2A

E(ju( ��Z

t

)� u( 

i( )

��Z

t

)jjF

t

�

m

��)

�

+

r

X

i=1

E

�

jE(u( 

i

��Z

t

)jF

t�

)� E(u( 

i

��Z

t

)jF

t

�

m

��)j

�

+ E

�

sup

 2A

E(ju( ��Z

t

)� u( 

i( )

��Z

t

)jjF

t�

)

�

� e"M sup

y2R

ju

0

(y)j+ r

"

3r

+ e"M sup

y2R

ju

0

(y)j = ":
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Therefore,sup
 2A

jE(u( ��Z

t

)jF

t

�

m

��
) � E(u( ��Z

t

)jF

t�

)j ! 0 in L1 for m ! 1.
Recalling the first and the second step, this yields the first statement in Theorem 3.54.

Fourth step:Let p := 1 + ", q > 0 with 1

p

+

1

q

= 1, where" is chosen as in regularity
condition (RC 1). Define the increasing functionsV 1

; V

2

; V

3

( ) : R

+

! R and the real
valued processesV 4

( ); V

5

( ) (for any 2 R

n+1 ) by

V

1

t

:=

Z

t

0

E

�

jb

s

j

p

+

n

X

i;j=0

jc

ij

s

j

p

+

�

Z

(jxj

2

^ jxj)F

s

(dx)

�

p

�

ds;

V

2

t

:=

Z

t

0

E

�

jb

s

j+

n

X

i;j=0

jc

ij

s

j+

Z

(jxj

2

^ jxj)F

s

(dx)

�

ds;

V

3

( )

t

:=

Z

t

0

E(j

s

( )j) ds;

V

4

( )

t

:=

Z

t

0

j

s

( )j ds;

V

5

( )

t

:=

Z

t

0



s

( ) ds:

Firstly note that the finiteness ofV 1, V 2, V 3

( ) follows from the integrability conditions
(RC 1) (forV 3

( ) cf. the proof of Theorem 3.14). Since these functions and processes are
absolutely continuous, there is a�-null setN � R

+

such thatV 1, V 2, V 3

( ) are differ-
entiable for any 2 Q

n+1 (cf. Elstrodt (1996), VII.4.12, VII.4.14). Moreover,N can be
chosen such thatV 4

( ), V 5

( ) are for any 2 Q

n+1

P -almost surely differentiable in any
t 2 N

C . Moreover, the finite derivatives are given by the respective integrands evaluated in
t. Fix t 2 (N [�)

C . Similarly to the first step, we have for any 2 R

n+1 that
�

�

�

1

�t

�

m

+

�

�

m

t

�

m

++

( )� 

t

( )

�

�

�

=

1

�t

�

m

+

jE(u( � (Z

t

�

m

++ � Z

t

�

m

�))��t

�

m

+



t

( )jF

t

�

m

�)j (3.23)

+ jE(

t

( )jF

t

�

m

�)� 

t

( )j:

Fifth step:Let " > 0,

L := 1 + � sup

 2A

j j+ sup

y2R

ju

0

(y)j+ 2 sup

 2A

j j sup

y2R

ju

00

(y)j;

andM := E(jb

t

j+

P

n

i;j=0

jc

ij

t

j+

R

(jxj

2

^ jxj)F

t

(dx)) <1. Choose 
1

; : : : ;  

r

2 A such
that for any 2 A, there is a 

i( )

2 f 

1

; : : : ;  

r

g at moste" := "=(3ML) away. By the mar-
tingale convergence theorem (cf. JS, I.1.42) we have thatE(j

t

( 

i

)�E(

t

( 

i

)jF

t

�

m

�)j <

"

3r

for any i 2 f1; : : : ; rg and anym large enough. By applying the mean value theorem tou

andu0, we obtain that

j(u( � x)�  � x)� (u( 

i( )

� x)�  

i( )

� x)j

� (jxj

2

^ jxj)e"

�

1 + sup

y2R

ju

0

(y)j+ 2 sup

e

 2A

j

e

 j sup

y2R

ju

00

(y)j

�
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for any 2 A. Moreover, we havej >c
t

 �  

>

i( )

c

t

 

i( )

j = j( �  

i( )

)

>

c

t

( +  

i( )

)j �

2e"

P

n

i;j=0

jc

ij

t

j sup

e

 2A

j

e

 j. Summing the various terms up, it follows that for largem

E

�

sup

 2A

j

t

( )� ( 

i( )

)j

�

� e"LM =

"

3

: (3.24)

As in the third step, we can now conclude thatsup

 2A

jE(

t

( )jF

t

�

m

�)� 

t

( )j ! 0 in L1

for m!1.
Sixth step:Let m 2 N be so large that[t�m�; t�m++

] \ � = ?. Fix  2 R

n+1 for
the moment. Define the process(Y

s

)

s2R

+

by Y
s

:=  � (Z

s

� Z

t

�

m

�
)1

(t

�

m

�

;1)

(s). By Itô's
formula (cf. Jacod (1979), (3.89)), we obtain as in the proof of Theorem 3.14 that

u( � (Z

t

�

m

++ � Z

t

�

m

�))��t

�

m

+



t

( )

=

Z

t

�

m

++

0

1

[0;t

�

m

�

]

C
(s)u

0

(Y

s

�) � dZ

C

s

(3.25)

+

Z

[0;t

�

m

++

]�R

n+1

1

[0;t

�

m

�

]

C(s)(u(Y

s�

+  � x)� u(Y

s�

)) (�

Z

� �)(ds; dx) (3.26)

+

Z

t

�

m

++

t

�

m

�

(

s

( )� 

t

( )) ds (3.27)

+

Z

t

�

m

++

t

�

m

�

(u

0

(Y

s�

)� 1)b

s

�  ds (3.28)

+

1

2

Z

t

�

m

++

t

�

m

�

(u

00

(Y

s�

)� �) 

>

c

s

 ds (3.29)

+

Z

t

�

m

++

t

�

m

�

Z

�

u(Y

s�

+  � x)� u(Y

s�

)� u( � x)� (u

0

(Y

s�

)� 1) � x

�

F

s

(dx) ds:

(3.30)

As in the proof of Theorem 3.14, it follows that the terms (3.25), (3.26) are uniformly
integrable martingales (as processes of the upper integration limit). Hence,their conditional
expectation givenF

t

�

m

� equals 0.
Seventh step:Let " > 0 andL as in the fifth step. SinceV 2 is differentiable int, there

exixts aM > 0 such that(V 2

)

0

t

< M and 1

�t

�

m

+

(V

2

t

�

m

++

�V

2

t

�

m

�

) < M form large enough.
Choose 

1

; : : : ;  

r

2 A \ Q

n+1 such that for any 2 A, there is a 
i( )

2 f 

1

; : : : ;  

r

g at
moste" := "=(3ML) away. The differentiability ofV 3

( ); V

4

( ); V

5

( ) in t yields that we

have 1

�t

�

m

+

R

t

�

m

++

t

�

m

�



s

( ) ds

m!1

�! 

t

( ) P -almost surely, 1

�t

�

m

+

R

t

�

m

++

t

�

m

�

j

s

( )j ds

m!1

�!

j

t

( )j P -almost surely andE( 1

�t

�

m

+

R

t

�

m

++

t

�

m

�

j

s

( )j ds)

m!1

�! E(j

t

( )j) for any  2

Q

n+1 . By Elstrodt (1996), Korollar VI.5.5 it follows that 1

�t

�

m

+

R

t

�

m

++

t

�

m

�



s

( ) ds

m!1

�!



t

( ) in L

1 for any  2 Q

n+1 . Therefore, we have thatE(j 1

�t

�

m

+

R

t

�

m

++

t

�

m

�



s

( 

i

) ds �



t

( 

i

)j) <

"

3r

for any i 2 f1; : : : ; rg and anym large enough. The estimate (3.24) im-

plies thatE(sup
 2A

j

1

�t

�

m

+

R

t

�

m

++

t

�

m

�

(

s

( ) � 

s

( 

i( )

)) dsj) < e"ML =

"

3

and likewise
E(sup

 2A

j

t

( ) � 

t

( 

i( )

)j) <

"

3

for m large enough. Adding terms up as in the third
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and the fifth step, we can conclude that

sup

 2A

1

�t

�

m

+

�

�

�

E

�

Z

t

�

m

++

t

�

m

�

(

s

( )� 

t

( )) ds

�

�

�
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t

�

m

�

�

�

�

�

m!1

�! 0

in L1.
Eighth step:Firstly, observe thatsup

s2[t

�

m

�

;t

�

m

++

]

ju

0

(Y

s�

) � 1j is bounded and con-
vergesP -almost surely to 0 form ! 1. By domonated convergence, this implies that
k sup

s2[t

�

m

�

;t

�

m
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]

ju

0

(Y
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)�1jk

L

q

! 0 form!1. Moreover, Jensen's inequality and the

differentiability ofV 1 in t yield thatE(( 1

�t

�
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R
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�
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�
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s

j ds)

p

) �

1

�t

�

m

+

R

t

�

m
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t

�

m

�

E(jb

s

j

p

)

ds = O(1) for m!1. Together, we obtain with Hölder's inequality that
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+

�

�

�

E

�

Z

t

�

m

++
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�
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�
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�

�

� sup
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j j
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s2[t

�
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)� 1j
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1

�t

�

m

+

Z

t

�

m
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t

�

m

�
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s
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L

p

! 0

for m!1. This implies thatsup
 2A

1

�t

�

m
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jE(

R
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�

m
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t

�

m

�

(u

0

(Y

s�

)� 1)b

s

� dsjF

t

�

m

�)j ! 0

in L1 for m ! 1. With basically the same proof, we prove the convergence for the term
(3.29) instead of (3.28).

Ninth step:As in the proof of Theorem 3.14, it follows that

sup
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�
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�
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�
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�
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�
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y2R

ju

000
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:

As in the eighth step one shows that the first factor is bounded, the second converges to 0 in
L

q, and theLp-norm of the third factor isO(1) for m ! 1. This yields the same kind of
convergence for the term (3.30) as for (3.28) and (3.29).

Tenth step:Summarizing steps 6–9 showsL1-convergence to 0 of Term (3.23), uniform-
ly over all 2 A. In view of the fourth and the fifth step, this implies thatsup

 2A

j

1

�t

�

m

+

�

�

m

t

�

m

++

( ) � 

t

( )j ! 0 in L1 for m !1, and hence the proof of Theorem 3.54 is com-
plete. �

PROOF OFTHEOREM 3.55. First step:Fix t 2 �. According to Bauer (1978), Satz 19.6,
it suffices to show that for any subsequence(�

0

m

)

m2N

of (�
m

)

m2N

, there is a subsequence
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00
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P -almost surely form!1. Let (�0
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m2N
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00
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whereK
N

(0) denotes the closed ball with radiusN around 0. By a diagonal procedure
we can even find a subsequence(�
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m

)

m2N

of (�0

m

)

m2N

and aP -null setN
1

2 F such that
sup
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Second step:We will now show that the existence of a� > 0 such that for any 2
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is concave (cf. the proof of Theorem 3.22), the same holds for any on the straight line
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Third step:From the uniform convergence in step 1, it follows thatj�
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Chapter 4

Examples

In this chapter our goal is to illustrate our approach in concrete settings. We have chosen
primarily classical examples of different kinds. We perform explicit numerical calculations
only in those cases where we can do without sophisticated algorithms. The examples are
not intended primarily for model comparison or testing, nor to give new insights into the
implications of these settings. Rather, we want to suggest how our approach may be applied
in practice. As in the previous chapters, proofs are to be found at the end of any subsection.
For easier readability we do not note all of the regularity assumptions in the statements, e.g.
if they depend on the choice of parameters. In these cases we comment at the beginning of
the respective proof.

4.1 A Two-period Model

The following two-period model is one of the simplest market models altogether. Never-
theless, it should become evident how to pass from here to any multiperiod setting with a
finite state space. To begin with, we consider a market consisting of two securities. The
first one represents the bank account and serves as the numeraire (i.e.Z

0

= 1). We de-
note the second security byZ1 and call it stock. Its dynamics is given in Figure 4.1. The
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Figure 4.2: Strategy of the speculator for� = 1

large numbers denote the possible prices at timet = 0; 1; 2, whereas the small ones indicate
transition probabilities (e.g. we haveP (Z1

2

= 99jZ

1

1

= 90) = 0:4). Suppose that we are
working with a filtered space whose filtration is generated by(Z

0

; Z

1

). In the language of
the preceding two chapters the stochastic process(Z

0

; Z

1

) has the extended characteristics
(f1; 2g; "

(1;100)

; 0; 0; 0; K)

E, where

K

t

=

(

0 for t 62 f1; 2g
"

0


 (0:4"

0:1Z

1

t�1

+ 0:4"

0

+ 0:2"

�0:1Z

1

t�1

) for t 2 f1; 2g:

4.1.1 Derivative Pricing

By means of Corollary 3.23 or the remark following Corollary 3.37 (or Lemma 1.2) we can
now easily compute au

1

-optimal strategy' for A (i.e. for the speculator). Note that'0 as
well as'1

t

for t 62 f1; 2g can be freely chosen. Fort 2 f1; 2g, '1

t

is the uniquely determined
F

t�1

-measurable random variable represented in Figure 4.2. The upper, middle, and lower
branch correspond to the respective transitions fromZ

1

0

toZ1

1

in Figure 4.1. With the help of
Corollary 3.37 (or Equation (1.4)) we can determine the probabilities under the equivalent
martingale measureP � that is needed to obtain neutral derivative prices. These are given in
Figure 4.3, where one can also find the corresponding probabilities relative toP . The small
numbers on the branches indicate the transition probabilities with respect toP

�, which have
been computed as in the remark following Corollary 3.37. Of course multiplication of these
conditional probabilities also yieldsP �. Now let us consider a European call option on the
stock with discounted strike price95, i.e. a derivative with terminal valueX2

= (Z

1

2

�95)_0.
The corresponding neutral price processZ

2 is obtained by Equation (3.11) (or Lemma 1.7)
and can be found in Figure 4.3 as well.

4.1.2 Hedging

Assume that you are a bank trading in the market with securities 0, 1, 2 as in Figure 4.3. You
have sold100 options to a customer and want to hedge your risk by investing in the stock.
We suppose that you do this by choosing au

100

-optimal strategy for the set of all portfolios
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with fixed value'2

= �100, which corresponds to a very risk-averse attitude. In this
case maximization of the expected utility is almost equivalent to minimizing the expected
loss. In order to compute the optimal portfolio using Corollary 3.23, you need the extended
characteristics of the processZ = (Z

0

; Z

1

; Z

2

). Since this process is discrete, they are
given by(1; 2; "

(1;100;7:37)

; 0; 0; 0; K)

E (cf. Lemma 2.20 and the following remark), where
K

t

(�) = E(�Z

t

2 �jF

t�1

) for i = 1; 2 can be obtained from Figure 4.3 and the transition
probabilities in Figure 4.1. The resultingu

100

-optimal strategy' is noted in Figure 4.4. As
for the speculator in the previous subsection,'

0 and'
t

for t 62 f1; 2g can be arbitrarily
chosen. Observe that using Lemma 1.2 instead of Corollary 3.23 yields the same results. In
the same manner we can now compute the optimal hedge if you have bought 100 options
(i.e.'2

= 100 instead of'2

= �100) (cf. Figure 4.5). Observe that the strategies in Figure
4.5 are not just the negative of those in Figure 4.4, as would be the case for theperfect
hedgein a complete model. This is due to the fact that we are working with an asymmetric
utility function that distinguishes possible losses and gains. Note also that theu

�

-optimal
portfolios are not pure hedging strategies. This becomes apparent if we choose small values
for the risk aversion� and the fixed position'2 as we do in Figure 4.6 (� = 1; '

2

= �1).
On the upper branch the optimal number of stocks is 1.032. This may be surprising, since
'

1

2

= 1 would be a perfect hedge for this part of the market (cf. Figure 4.3). This property of
overhedging is due to the fact thatu

�

-optimal trading is, by the shape of the utility function
u

�

, a mixture between minimization of expected losses and maximization of expected gains.
For small� the expected gains are more important, whereas for large� the losses become
predominant so that the namehedging strategyis adequate.

4.1.3 Trading Corridors

Trading corridors allow you to choose a reasonable strategy without accepting too many or
too large transactions. In Figures 4.7 and 4.8 we calculate(u

100

; ")-trading corridors for the
hedging problems in Figure 4.4 resp. 4.5 and two values of" (10 and0:01, respectively)."
here corresponds to"

1

in Definition 3.33 (or" in Definition 1.4). "
2

is irrelevant since we
are working in a discrete-time model. The boundary points of the trading corridors canbe
numerically easily obtained by Lemma 3.34. In Figures 4.7 and 4.8 we only indicate the
possible intervals for'1 since'2 is fixed. Since1

2

u

100

(x) � x ^ 0, the utility bandwidth"
has an intuitive interpretation. Choosing" = 10 (resp.0:01) means sorting out the strategies
whose expected loss does not exceed the optimal value by more than20 (resp.0:02). In
Figure 4.8 one may make an interesting observation. Even for the very small value" = 0:01

the allowed intervals are surprisingly large. This means that there is a comparatively broad
range of portfolios with approximately the same expected utility. In particular, it shows that
multiplying the strategies from Figure 4.4 by�1 produces an almost optimal portfolio for
the problem in Figure 4.5. The converse, however, is not true.
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Figure 4.11: Consistent and approximate prices as a function of external supply

4.1.4 Price Regions

The concept of�r-price regions is based on(�; �2)-consistent (resp.(�; �2)-approximate)
price processes. The computation of(�; �

2

)-approximate prices is relatively straightforward
(cf. Section 3.5, in particular the remark following Definition 3.45, or alternatively Subsec-
tion 1.2.5). On the other hand,(�; �2)-consistent processes are usually hard to obtain, but
since our model is a simple multiperiod market with a finite state space, wecan apply the
recursive algorithm sketched in Subsection 1.2.5. In Figure 4.9 we list the0:2-price regions
for the derivativeX2

= (Z

1

2

�95)_0 in the market from Figure 4.1. More precisely, the up-
per triplets contain the(1; 0:2)-, (1; 0)- and(1;�0:2)-consistent prices at each time. Below
one can find the(1; 0:2)-, (1; 0)- and(1;�0:2)-approximate prices, respectively. Since the
numbers in the middle correspond to zero supply, they equal the neutral option prices from
Figure 4.3. To be very strict, we have not shown that the0:2-price region actually consists of
all prices between the upper and the lower value, which correspond to minimal and maximal
external supply, respectively. But we believe that this holds in at least simple models of this
kind. For a comparison, we note the arbitrage bounds for the option in Figure 4.10. In Figure
4.9 one can observe a certain difference between(�; �

2

)-consistent and -approximate prices,
but it seems to be small from a numerical point of view. One may wonder whether thisstill
holds for arbitrary values of�2. In Figure 4.11 we plot the initial(1; �2)-consistent (straight
line) and(1; �2)-approximate (dashed line) option priceZ2

0

as a function of the external sup-
ply �2. As one may expect, the prices increase (resp. decrease) with growing demand (resp.
supply) to the upper (resp. lower) arbitrage bound. The difference becomes the greatest for
medium-sized positive values of external supply. In Subsection 1.2.5 and Section 3.5we
raise the question as to whether an iteration of the procedure leading to approximate prices
yields a better agreement with consistent prices. In our simple example this is in fact true,
as the dotted line in Figure 4.11 indicates. It corresponds to a single repetition of steps 3 to
5 on page 26 resp. steps 3 to 8 on page 123.
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Figure 4.12: Improved model forZ2

0

= 7:00

4.1.5 Improved Derivative Models

If the option priceZ2

0

on the market equals7:00 instead of its neutral value7:37, one may
want to take this into account by working with7:00-consistent price processes in the sense
of Section 3.6 (or Subsection 1.2.6). The improved market models can be found in Figure
4.12, where the prices on the left (i.e.15; 6:10; 0:93) correspond to the7:00-consistent price
process and the prices on the right (i.e.15; 6:11; 0:94) to the approximate7:00-consistent
process, respectively. The value of the external supply�

2 leading to the initial priceZ2

0

=

7:00 must be determined numerically. For an initial valueZ

2

0

= 7:70 we obtain the numbers
in Figure 4.13. Based on the market model in Figure 4.13, we can now once more tackle
the hedging problems from Subsection 4.1.2 that lead to Figures 4.4 and 4.5. The resulting
strategies are listed in Figures 4.14 and 4.15. The numbers on the left (resp. right)again
correspond to the numbers on the left (resp. right) in Figure 4.13, i.e. to consistent prices or
approximately consistent prices, respectively.
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4.1.6 Change of Numeraire

In this final subsection we want to examine the effect of a numeraire change on the option
prices. To this end, let us assume that the market considers the stock to be a riskless invest-
ment and the money market account as risky. We repeat the calculations from thebeginning
of the section for the marketbZ = (

b

Z

0

;

b

Z

1

), wherebZ0

:= Z

1

=Z

1

= 1 now is the discounted
numeraire andbZ0

:= Z

0

=Z

1

= 1=Z

1 stands for the risky bank account. The discounted
payout of the option is now given bybX2

= X

2

=Z

1

2

= (1� 95

b

Z

0

) _ 0. If one computes the
corresponding neutral derivative price processbZ2 and reconverts the values into multiples of
the bank account by settingZ2

:=

b

Z

2

Z

1

=Z

0

=

b

Z

2

Z

1, then one obtains the price process in
Figure 4.16. A comparison with Figure 4.3 shows that the prices differ, though not greatly
when compared to the unsuitable choice of the numeraire in this subsection. Note thatthe
valueZ2

1

= 15 coincides in all option pricing models we have considered in this section,
since it is the only value consistent with the absence of arbitrage.

4.2 Models with Continuous Paths

Since the formulas become much easier when jumps are absent, it is worthwhile to repeat
some of the results from the previous chapter for models with continuous paths.

4.2.1 Hedging

We consider a market with three securities 0, 1, 2, where the first one denotes thenumeraire.
Since the corresponding discounted price processes are assumed to be continuous, their
extended characteristics are of the form(?; P (Z

0

0

;Z

1

0

;Z

2

0

)

; b; c; 0; 0)

E for R3 -valued resp.R3�3 -
valued processesb andc. Assume now that you have sold one share of Security 2 and you
want to hedge the risk.

Lemma 4.1 Theu-optimal strategy for the hedging problem'2

t

= �1 is given by

'

1

t

=

c

12

t

c

11

t

+

1

�

b

1

t

c

11

t

for anyt 2 R

+

, where� := �u

00

(0) denotes the risk aversion of the applied utility function.
(As usual,'0 can be arbitrarily chosen.)

Remark. For large values of� theu-optimal strategies deserve the name hedging strategy.
One may call the limiting strategy'1

t

= c

12

t

=c

11

t

for � ! 1 pure hedge. It coincides with
the strategy derived by Föllmer & Schweizer (1991) (Theorem (3.14)), which is based on a
different optimality criterion.
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4.2.2 Trading Corridors

For the computation of(u; "
1

; "

2

)-trading corridors the parameter"
1

is irrelevant, since the
fixed jump part�

t

of the local utility is0. Trading corridors can be easily computed for the
above hedging problem.

Lemma 4.2 The(u; "
1

; "

2

)-trading corridor for the hedging problem'2

t

= �1 is given by

J(!; t) = R �

"

'

1

t

�

s

2"

1

�c

11

t

; '

1

t

+

s

2"

1

�c

11

t

#

� f�1g;

where'1 and� are defined as in Lemma 4.1.

4.2.3 Derivative Pricing

Suppose you are in a market consisting of only one underlying besides the numeraire. Again,
the extended characteristics of the corresponding discounted price processZ = (Z

0

; Z

1

)

is of the simple form(?; P (Z

0

0

;Z

1

0

)

; b; c; 0; 0)

E for someR2 -valued resp.R2�2 -valued pre-
dictable processesb andc. The following lemma characterizes the equivalent probability
measureP � from Theorem 3.36 that allows computation of neutral derivative prices.

Lemma 4.3 The density processL ofP � in Theorem 3.36 is of the form

L

t

= exp

�

�

Z

t^T

0

b

1

s

c

11

s

dZ

1;c

s

�

1

2

Z

t^T

0

(b

1

s

)

2

c

11

s

ds

�

for any t 2 R

+

. Moreover, theP �-extended characteristics of(Z0

; Z

1

) on [0; T ] are given
by (?; P (Z

0

0

;Z

1

0

)

; 0; c; 0; 0)

E.

Remarks.

1. Note thatP � is independent of the applied utility function.

2. The measureP � in Lemma 4.3 is calledminimal martingale measureby Föllmer &
Schweizer (1991) (Theorem 3.5). It is used to determine hedging strategies that are
optimal in a locally quadratic sense. Note that this equality only holds in the case of
continuous processes.

4.2.4 Price Regions and Improved Derivative Models

Since we have no result concerning the existence of consistent prices (cf. Section 3.5),
we confine ourselves to indicate the density process of the probability measuree

P leading
to (�; �

2

)-approximate prices for a derivative. The setting is as in the previous subsec-
tion. Denote byZ2 the neutral price process of a derivative given by its terminal value
X

2 at timeT > 0. Denote the joint extended characteristics ofZ = (Z

0

; Z

1

; Z

2

) by
(?; P

(Z

0

0

;Z

1

0

;Z

2

0

)

; b; c; 0; 0)

E.
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Lemma 4.4 Let � > 0, �2 2 R be given. The density processeL of eP in step 6 before
Definition 3.43 is given by

e

L

t

= L

t

� exp

�

��

2

�

Z

t^T

0

c

12

s

c

11

s

dZ

1;c

s

� Z

2;c

t

�

+

1

2

(��

2

)

2

Z

t^T

0

�

c

12

s

c

11

s

� c

22

s

�

ds

�

;

for anyt 2 R

+

, whereL is the process in Lemma 4.3.

Proofs

PROOF OFLEMMA 4.1. Suppose thatc11
t

6= 0 outside some evanescent set. Otherwise an
optimal strategy does not necessarily exist.

By Corollary 3.23 a strategy' is u-optimal for the set of all strategies with'2

t

= �1 if
and only ifb1

t

� �c

11

t

'

1

t

� �c

12

t

'

2

t

= 0, i.e. if '1

t

=

c

12

t

c

11

t

+

1

�

b

1

t

c

11

t

for anyt 2 R

+

. �

PROOF OFLEMMA 4.2. We have to assume thatc11
t

6= 0 outside some evanescent set as in
the previous proof.

Fix (!; t) 2 
 � R

+

. We have that 2 J(!; t) if and only if  2

= �1 and
t

( ) �

('

1

t

)� "

1

. The latter condition is equivalent to

�

1

2

�c

11

t

�

( 

1

� '

1

t

)

2

+ ( 

1

� '

1

t

)

�

2'

1

t

� 2

b

1

t

�c

11

t

� 2

c

12

t

c

11

t

�

� 2

"

1

�c

11

t

�

� 0

which in turn is equivalent to( 1

� '

1

t

)

2

�

2"

�c

11

t

. This implies the claim. �

PROOF OFLEMMA 4.3. Note that the conditions in Theorem 3.36 depend on the particular
model and have to be checked.

By Corollary 3.23, a strategy' = ('

0

; '

1

) isu-optimal forA if and only if b1
t

��c

11

t

'

1

t

=

0, i.e. if '1

t

=

1

�

b

1

t

c

11

t

. The shape of the Radon-Nikodým density and of theP

�-extended char-

acteristics of(Z0

; Z

1

) then follows from Theorem 3.36 and Corollary 3.38. �

PROOF OF LEMMA 4.4. Note that the assumptions in the steps before Definition 3.43
depend on the particular model and still have to be checked.

As in the proof of Lemma 4.1, one verifies that the strategy' in step 3 on page 123 is

given by'1

t

=

1

�

b

1

t

c

11

t

�

c

12

t

c

11

t

�

2 for anyt 2 R

+

. HenceeL in step 5 is of the form

e

L = exp

�

�

Z

T^t

0

�'

1

s

dZ

1;c

s

� ��

2

Z

2;c

t

�

1

2

Z

T^t

0

(�'

1

s

)

2

c

11

s

ds�

Z

T^t

0

�

2

'

1

s

�

2

c

12

s

ds�

1

2

Z

T^t

0

(��

2

s

)

2

c

22

s

ds

�

:

The claim now follows from a simple calculation. �
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Figure 4.17: Stock price and European call price

4.3 The Black-Scholes Model

The aim of this section is to show that our approach is applicable to this now classical model
and yields the same formulas. The setting is as follows. Consider a market with a money
market account and a stock whose price processesS

0

; S

1 solve the stochastic differential
equations

dS

0

t

= rS

0

t

dt

dS

1

t

= �S

1

t

dt+ �S

1

t

dW

t

or, in discounted terms,

dZ

0

t

= 0

dZ

1

t

= (�� r)Z

1

t

dt+ �Z

1

t

dW

t

; (4.1)

whereS0

0

:= 1, S1

0

; � 2 R

�

+

, r; � 2 R are given andW denotes a standard Wiener process.
Of course, the solution to these equations areS

0

t

= e

rt, S1

t

= S

1

0

exp((��

�

2

2

)t+ �W

t

). By
Lemma 2.22,Z = (Z

0

; Z

1

) is an extended Grigelionis process with extended characteristics
(?; "

(1;S

1

0

)

; b; c; 0; 0)

E, whereb0
t

= 0, b1
t

= (� � r)Z

1

t

, c00
t

= c

01

t

= c

10

t

= 0, c11
t

= (�Z

1

t

)

2.
Assume that the filtration is the canonical filtration of(S

0

; S

1

) (or equivalently, ofZ1 or of
W ) or itsP -completion.

4.3.1 Derivative Pricing

Lemma 4.5 LetT 2 R

+

be given. Then regularity condition (RC 1) and Conditions 1 to 5
in Theorem 3.36 are met. Relative to the pricing measureP

� (whose density may be found
in Lemma 4.3),(Z0

; Z

1

) has the extended characteristics(?; "
(1;S

1

0

)

; 0; c; 0; 0)

E on [0; T ].

Remarks.

1. TheP �-dynamic of(Z0

; Z

1

) is the same as theP -dynamic but with drift0 instead of
�� r for Z1.
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Figure 4.18: Optimal hedge and trading corridor

2. As is well-known, there exists but one equivalent martingale measure onF

T

in this
model (cf. Harrison & Pliska (1981), p.246). Hence, any approach to derivative pric-
ing that is based on an EMM yields the same results in this setting. In particular, all
consistent and approximate prices as in Section 3.5 coincide with the neutral price
process. Moreover, the price regions consist only of a single process.

Now we turn to the explicit computation of derivative and especially Europeancall option
prices.

Lemma 4.6 LetT 2 R

+

andX2

= g(Z

1

t

) for a measurable random variableg : R ! R.
Suppose that there areM

1

;M

2

2 R with jg(x)j �M

1

+M

2

jxj for anyx 2 R. Define a map-
pingC

BS

: R

+

�R

+

! R by(y; v) 7!
R

g(y exp(

p

vx�

v

2

))�(x)dx, where� : R ! R de-
notes the density of the standard normal distribution. Then the unique neutral price process
Z

2 for the derivative with terminal valueX2 at T is of the formZ2

t

= C

BS

(Z

1

t

; �

2

(T � t))

for anyt 2 [0; T ].

Corollary 4.7 Let K 2 R. For the European call optionX2

= ((S

1

T

� K) _ 0)=S

0

t

=

(Z

1

T

� e

�rT

K) _ 0, the neutral price processZ2 is of the form

Z

2

t

= Z

1

t

�

�

log(Z

1

t

e

rT

=K)

�

p

T � t

+

�

2

p

T � t

�

�Ke

�rT

�

�

log(Z

1

t

e

rT

=K)

�

p

T � t

�

�

2

p

T � t

�

for anyt 2 [0; T ), where� : R ! [0; 1] denotes the cumulative distribution function of the
standard normal distribution.

Figure 4.17 shows a sample path ofS

1 and the corresponding European call priceS2

=

Z

2

S

0 for S1

0

= 100, r = log(1:05)=250 (i.e. 5%=year),� = log(1:09)=250 (i.e. 9%=year),
� = 0:2387=

p

250 (i.e. an annual volatility of23:87%), where time is measured in trading
days (:= 1=250 year).

4.3.2 Hedging

Consider a market with three securities 0, 1, 2, whereZ

0, Z1 are as in the previous subsec-
tion andZ2 denotes the neutral price process of a European call option with the strike price
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K 2 R and expiration dateT 2 R

+

. Assume that you have sold one option and you want to
hedge your risk.

Lemma 4.8 Theu-optimal strategy for the hedging problem'2

t

= �1 is given by

'

1

t

= �

�

log(Z

1

t

e

rT

=K)

�

p

T � t

+ �

p

T � t

�

+

1

�Z

1

t

�� r

�

2

for any t 2 [0; T ), where� := �u

00

(0) is the risk aversion ofu and� is defined as in
Corollary 4.7. (As usual,'

0

can be arbitrarily chosen.)

Remark. As noted previously,u-optimal strategies deserve the name hedging strategy only
for large values of the risk aversion�. Indeed, for� ! 1 the portfolio'1 in the previous
lemma converges to the first term, which is theperfect hedgeor duplicating strategyfor X2

in the Black-Scholes model. The second term equals theu-optimal strategy of a speculator.

4.3.3 Trading Corridors

We can easily obtain a(u; "
1

; "

2

)-trading corridor for the above hedging problem using
Lemma 4.2.

Lemma 4.9 The(u; "
1

; "

2

)-trading corridor for the hedging problem'2

t

= �1 is given by

J(!; t) = R �

"

'

1

t

�

r

2"

1

�

1

�Z

1

t

; '

1

t

+

r

2"

1

�

1

�Z

1

t

#

� f�1g;

where'1 and� are defined as in Lemma 4.8.

In Figure 4.18 we plot theu-optimal strategy from Lemma 4.8 and the stock component of
the trading corridor in Lemma 4.9 for the sample paths from Figure 4.17. The chosen values
of the parameters are� = 100, K = 100, "

1

= 10; 000. Note that the width
p

2"

1

�

�1

=�Z

1

t

of the allowed interval for'1 hardly changes over time sinceZ1 is approximately constant.
Nevertheless, for options closing roughly at the money, one has to rebalance the hedging
portfolio more and more often towards the end because the optimal value'

1

t

changes more
violently.

Proofs

PROOF OFLEMMA 4.5. Observe that'1

t

=

b

1

t

�c

11

t

=

��r

��

2

Z

1

t

is a well-defined locally bounded

process such that' = (0; '

1

) 2 A is u-optimal forA, e.g. by Corollary 3.23. More-
over, we have thatN

t

= ��

R

T^t

0

'

s

� dZ

C

s

= �

��r

�

W

T^t

in Theorem 3.36 which implies
that Condition 3 is met. Note that(LZ1

)

T is a stochastic exponential of a Wiener process
without drift and hence aP -martingale. By JS, III.3.8 this implies that(Z1

)

T and hence
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Z

T is aP �-martingale. Assumption 5 holds since the filtration is generated by the stan-
dard Wiener processW and any local martingale has the representation property relative
to W (e.g. by Theorem 2.65). SinceZ1

s

= Z

1

0

exp((� � r �

�

2

2

)s + �W

s

), one easily
shows thatsup

s2[0;t]

E((Z

1

t

)

4

) < 1 for any t 2 R

+

. This implies thatE(
R

t

0

(b

s

)

2

ds) =

(� � r)

2

R

t

0

E((Z

1

t

)

2

) ds < 1 and similarlyE(
R

t

0

(c

11

s

)

2

ds) < 1 for any t 2 R

+

. Hence
integrability condition (RC 1) holds. �

PROOF OFLEMMA 4.6. By Theorem 3.36, we have thatZ2

t

= E

�

(g(Z

1

T

)jF

t

) =

R

g(�!

T�t

)

P

�

(Z

1

t+s

)

s�0

jF

t

(d�!) P -almost surely for anyt 2 [0; T ]. By Lemma 2.33,P �

(Z

1

t+s

)

s�0

jF

t

(!) is
for P -almost all! 2 
 a solution to the random martingale problem(?; "

Z

1

t

(!)

;

�

b; �c; 0; 0)

M

in R with �

b

s

= 0 for s � T � t and �c

s

(�!) = (��!

s

)

2. By Corollary 2.41 this mar-
tingale problem has a unique solution. IfW denotes a standard Wiener process, then
Y

s

= Z

1

t

(!) exp(�

�

2

2

s + �W

s

) is obviously a solution-process to this martingale problem
on [0; T � t]. Therefore, we haveZ2

t

=

R

g(Z

1

t

exp(�

�

2

2

(T � t) + �u))N(0; T � t)(du) =

C

BS

(Z

1

t

; �

2

(T � t)) P -almost surely for anyt 2 [0; T ]. �

PROOF OFCOROLLARY 4.7. The well-known pricing formula is obtained by integration
(cf. Lamberton & Lapeyre (1996), Remark 4.3.3). We will now show that integrability
condition (RC 1) holds in the enlarged market. Denote by(?; "

(1;Z

1

0

;Z

2

0

)

;

e

b;ec; 0; 0)

E the ex-

tended characteristics ofeZ = (Z

0

; Z

1

; Z

2

). Since we have already shown that (RC 1)
holds forZ = (Z

0

; Z

1

), it suffices to show that
R

t

0

E(j

e

b

2

s

j

2

) ds < 1,
R

t

0

E(jec

12

s

j

2

) ds < 1,
and

R

t

0

E(jec

22

s

j

2

) ds < 1 for any t 2 R

+

. It is enough to considert = T , becauseZ2

is constant on[T;1). The claim follows if we can show thatjeb2
t

j � j

e

b

1

t

j, jec12
t

j � jec

11

t

j,
and jec22

t
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11

t

j for any t 2 [0; T ) since we have shown that integrability condition (RC
1) holds forZ and" = 1. For fixedm 2 N , define the stopping timeT

m
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R

+
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1

m
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1

m
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b
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e

b

T
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T
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3 be aC2-function with
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m
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1

m
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m

t

= f(t; Z

1

t

) for any t 2 [0; T

m

], application of
Itô's formula (cf. Theorem 2.25) and the fact thatf

3 is a solution to the partial differential
equationD

1

f

3

(t; z) +

1

2

(�z)

2

D

22

f
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e

b
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for anyt 2 [0; T

m

]. One easily verifies that for anyt 2 [0; T�

1

m

] the mapping[ 1
m

;1)! R,

z 7! D

2

f

3

(t; z) = �(

log(z=Ke

�rT

)

�

p

T�t

+ �

p

T � t) is positive, increasing, and converging
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to 1 for z ! 1 (cf. Lamberton & Lapeyre (1996), Remark 4.3.6). Hence, we have
jD

2

f

3

(t; Z

1

t

)j � 1 on [0; T ], which impliesjeb2
t

j = j

b

b

2

t

j � j

e

b

1

t

j, jec12
t

j = jbc

12

t

j � jec

11

t

j,
jec

22

t

j = jbc

22

t

j � jec

11

t

j for anyt 2 [0; T ]. By lettingm!1 it follows that this also holds on
[0; T ]. Hence, we are done. �

PROOF OF LEMMA 4.8. By Lemma 4.1 we have that the optimal strategy is given by

'

1

t

=

ec

12

t

ec

11

t

+

1

�

e

b

1

t

ec

11

t

for anyt 2 [0; T ], whereeb, ec are as in the previous proof. From the proof

of Corollary 4.7, it follows thatec
12

t
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= D

2

f

3
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t

) = �(

log(Z

1

t

=Ke

�rT

)

�

p
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p

T � t) for any
t 2 [0; T

m

] and hence for anyt 2 [0; T ), becausem can be chosen arbitrarily small. Since
e

b

1

t

ec

11

t

=

��r

�

2

Z

1

t

, the claim follows. �

PROOF OFLEMMA 4.9. This follows immediately from Lemma 4.2. �

4.4 Models with Independent Discrete Returns

In this section we consider a discrete-time version of the model from the previous section.
As before, the market consists of two assets 0, 1, namely the numeraire and a stock. We
work on a stochastic basis(
;F; (F

t

)

t2R

+

; P ), where(F
t

)

t2R

+

is a discrete filtration (cf.
Definition A.4). We assume that the discounted price processZ

1 is discrete and, moreover,
given by

Z

1

t

= Z

1

t�1

(1 + "

t

) for anyt 2 N

�

;

whereZ1

0

2 R

�

+

and("
t

)

t2N

� is a sequence of identically distributed random variables (with
distributionQ on (R;B)) such that"

t

is independent ofF
t�1

for any t 2 N

� . Assume that
R

jxjQ(dx) < 1 and moreoverQ((0;1)) > 0, Q((�1; 0)) > 0. By Lemma 2.20 this
implies thatZ = (Z

0

; Z

1

) is an extended Grigelionis process with extended characteristics
(N

�

; "

(1;Z

1

0

)

; 0; 0; 0; K)

E, whereK
t

(G) =

R

1

G

(0; Z

1

t�1

x)Q(dx) for any t 2 N

� , G 2 B

2.
From Theorem 3.28 one easily concludes that the market allows no arbitrage.

Remarks.

1. If Q is a lognormal distribution with parameters��+ r+ �

2

=2, ��1,�1 (i.e. the law
of log(1 + "

t

) isN(�� r� �

2

=2; �

2

), cf. Johnson & Kotz (1970a), Chapter 14), then
the process(Z1

t

)

t2N

has the same distribution as in the model in Section 4.3. Or, to
put it another way, theN-discretized market of the Black-Scholes setting is a model
of the type above.

2. The conditions onQ are met in particular for�-stable distributionsS
�

(�; �; �) with
� 2 (1; 2], � 2 (0;1), � 2 [�1; 1], � 2 R (cf. Samorodnitsky & Taqqu (1994),
Property 1.2.16 and p.16).

3. Under the above assumptions, Conditions 1-5 in Theorem 3.36 hold (cf. Corollary
3.37).
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4.4.1 Derivative Pricing and Hedging

The following lemma yields the dynamic of(Z0

; Z

1

) under the measureP � in Corollary
3.37 leading to neutral derivative prices.

Lemma 4.10 Let T 2 N . The extended characteristics(N� ; "
(1;Z

1

0

)

; 0; 0; 0;

e

K)

E of Z =

(Z

0

; Z

1

) relative to the measureP � in Corollary 3.37 are given by

e

K

t

(G) =

Z

1

G

(0; Z

1

t�1

x)

u

0

�

( x)

R

u

0

�

( ex)Q(dex)

Q(dx)

for anyt 2 f1; 2; : : : ; Tg,G 2 B

2, where 2 R solves0 =
R

xu

0

�

( x)Q(dx).

Remark. Relative toP �, the dynamic of(Z0

; Z

1

) is basically the same as with respect toP ,
but with eQ instead ofQ, where the probability measureeQ is given by its Radon-Nikodým
density

d

e

Q

dQ

(x) :=

u

0

�

( x)

R

u

0

�

( ex)Q(dex)

for anyx 2 R:

In other words,("
t

)

t2N

� are independenteQ-distributed random variables underP �.

The following corollary shows how to compute derivative prices explicitly.

Corollary 4.11 LetT 2 N andX2

= g(Z

1

T

), whereg : R ! R is a measurable mapping.
Assume that there areM

1

;M

2

2 R with jg(x)j � M

1

+M

2

jxj for anyx 2 R. Define a
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� : R

+
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Z

g
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y
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Q

[T�t]
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(1+ e"

i

) for independenteQ-distributed random
variablese"

1

; e"

2

; : : :), whereeQ is defined as in the preceding remark. Then the unique neutral
price processZ2 for the derivative with terminal valueX2 at T occurs in the formZ2

t

=

�(t; Z

1

t

) for anyt 2 [0; T ]. Moreover, the extended characteristics(N ; "

(1;Z

1
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;�(0;Z
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))

; 0; 0; 0;
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E ofZ = (Z

0
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1
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) are given by
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0; xZ

1

t�1
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(1 + x))� �(t� 1; Z
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3.

The preceding corollary allows relatively straightforward numerical computation of deriva-
tive prices and hedging strategies. Observe that

�(y; t) =

Z

g(y exp(x))

�

�

T�[t]

i=1

R

�

(dx);
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Figure 4.19: Logarithmic 1-day log-return densities

where the probability measureR on (R;B) is given byR(G) =
R

1

G

(log(1+x))

e

Q(dx) for
anyG 2 B and the asterisk denotes convolution. Hence in order to obtain prices, one may
simply calculate the convolutions ofR (by means of characteristic functions) and perform
a numerical integration. Since the joint extended characteristics ofZ = (Z

0

; Z

1

; Z

2

) are
known in terms of� andQ, one can now evaluate optimal hedging strategies numerically
by means of Theorem 3.22 and Corollary 3.23.

4.4.2 Lognormal Returns

In this subsection we consider theN-discretized version of the Black-Scholes setting as dis-
cussed in Remark 1. More specifically, we chooseS

0

t

= e

r[t], S1

0

= 100, r = log(1:05)=250,
� = log(1:09)=250, � = 0:2387=

p

250 andQ as the lognormal distribution with parameters
��+ r+ �

2

=2, ��1,�1. As before, time is measured in trading days (= 1=250 year). Note
that the distribution of thelog-returnX

t

= log(Z

1

t

)�log(Z

1

t�1

) (namelyN(��r��

2

=2; �

2

))
is the same in this model and in the Black-Scholes setting. Moreover, it does notdepend
on t. One easily verifies that the laws ofX

t

under the pricing measures, either from the
Black-Scholes model or from this section, are also independent oft. By P; eP; P �, we de-
note the given probability measure, the pricing measure in the Black-Scholes model, and
the pricing measure in this section, respectively. Accordingly, the densities of the law of
the log-returnX

t

relative toP; eP; P � are calledf; ef; f �. Hence,f; ef are the densities of a
N(�� r� �

2

=2; �

2

)- andN(��

2

=2; �

2

)-distribution, respectively.f � does not correspond
to a normal distribution. The logarithms of these densities (being parabolas forf;

e

f ) are
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Figure 4.20: Time value and difference to Black-Scholes prices 1 day to maturity
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Figure 4.21: Time value and difference to Black-Scholes prices 10 days to maturity
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Figure 4.23: Hedging strategies 1, 10, 60 trading days to maturity

plotted in the upper diagram in Figure 4.19. The dashed line showslog(f) and is hardly
visible since it is very close to a solid line representinglog(

e

f) andlog(f �), which tally even
more. For better visibility we add two further graphs, indicating the differences between
these functions. The dashed line on the left representslog(

e

f) � log(f), whereas the solid
line markslog(f �)�log(f). On the right-hand side in Figure 4.19, we plotlog(

e

f)�log(f

�

).
Observe that the distribution of the return under the continuous-time and the discrete-time
pricing measure is very similar but not identical. Moreover, note that the discrete model
is not complete and hence does not allow derivative pricing solely based on the absence of
arbitrage.

One may wonder how strongly the discretization of the Black-Scholes model affects
option prices. Consider a European call option with strike priceK = 100 expiring in 1, 10,
60 trading days, respectively. We define thetime valueof the option asS2

t

� ((S

1

t

�K)_0),
whereS2

t

= Z

2

t

S

0

t

is the current price of the option in undiscounted terms and((S

1

t

�K)_0)

its payoff if it were to expire immediately. Note that the time value of a European call option
is non-negative since the even larger number(S

1

t

�Ke

�r(T�t)

)_0 is a lower arbitrage bound,
as one may easily verify. The diagram on the left in Figure 4.20 shows the time value of
our European call one day before expiration as a function of the current stock priceS

1

0

.
The dotted horizontal line represents the lower arbitrage bound. In fact, the solidline in
the left diagram consists of two curves, firstly the time value in the discrete-time setting and
secondly in the Black-Scholes model from the previous section. The tiny differencebetween
the two curves is plotted on the right, i.e. the Black-Scholes value is slightlygreater than the
price in the discrete model. In Figures 4.21 and 4.22 we repeat the calculations for an option
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ten and sixty trading days before expiration. Although we expect the difference between the
prices to be small, we are surprised to note – especially in the case of theshort-term option
– that the relative deviation turns out to be so tiny.

Having seen that the effect of discretization to European call option pricesis negligible,
let us now turn to hedging strategies. Assume that you have sold one option and you want
to hedge your risk by trading in the stock according to au

�

-optimal strategy. We choose
the relatively large value� = 100 for the risk aversion. In Figure 4.23 we plot the number
'

1

t

of shares of stock in theu
100

-optimal portfolio in terms of the current stock priceS1

0

.
The upper diagram corresponds to the option one trading day before expiration. The solid
line shows the optimal portfolio in the discrete model, whereas the dashed line indicates the
hedging strategy in the Black-Scholes setting. Observe that the strategies differ significantly.
For larger time horizons the difference gets rapidly smaller as the second and third graph
indicate. In the diagram on the left (10 trading days before expiration), one can still observe
a small difference which seems to have vanished in the right picture (corresponding to 60
trading days before expiration).

From Figure 4.23 we may draw the following lesson. If you are functioning in a Black-
Scholes market (or in its discretized form – a negligible difference as far as option prices
are concerned), and can rebalance your portfolio only once a day, then the continuous-time
hedging portfolio seems to be reasonable if the option is still valid for the near future. Just
before expiration, however, one may do better. The dotted line in the upper diagram of
Figure 4.23 shows the hedging strategy in the continuous-time Black-Scholes model 1/2
day before expiration. It coincides quite well with the optimal portfolio in our discrete-time
model, where the last rebalance takes place one day before maturity.

It occasionally makes sense to mix continuous- and discrete-time models. Ifone be-
lieves that the market reacts very rapidly, one should use a continuous-time framework for
the computation of derivative prices. On the other hand, if you can only afford to trade on
a relatively coarse time grid, you are practically investing in a discrete-time market. There-
fore, you may convert the model into a discretized market in the sense of Definition 3.53
before you actually compute optimal hedging strategies. The above example shows that even
when you work with the option prices from the continuous-time model, the discretization
has an effect on the optimal portfolio. However, for fine-meshed time grids thedifference
converges to 0 as shown in Theorem 3.55.

4.4.3 Stable Returns

As noted in Remark 2 above,�-stable distributions with stability index� > 1 are a possible
distributionQ for the return. Stable distributions for stock returns were proposed as early
as 1964 (Mandelbrot (1963), Fama (1964)) for dealing with the observed heavy tails of
market data. For our numerical computations we consider the exampleQ = S

�

(�; �; �)with
� = 1:9, � = 0:2387=(

p

250

p

2), � = 0, � = log(1:09)=250. As in the previous subsection
the bank accountS0

t

= e

r[t] with r = log(1:05)=250 serves as a numeraire, where the time
is measured in trading days. Moreover, we letS

1

0

= 100. From a theoretical point of view,
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Figure 4.25: Logarithmic 1-day return densities

one may want to replaceS
�

(�; �; �) with S

�

(�; �; �)j

R

+

+ "

0

S

�

(�; �; �)((�1; 0)), since
otherwise the stock price might jump to negative values. For the concrete numerical results
in this subsection, however, this does not make any difference. In the following paragraphs
we will compare the implications of this model to those of the Black-Scholes model with
parametersr, �, �

p

2. Note that, similarly to the previous subsection, the distribution of the
daily return"

t

= (Z

1

t

�Z

1

t�1

)=Z

1

t�1

does not depend ont, neither under the given probability
measureP in this or in the Black-Scholes model, nor under the pricing measureP

�. We
denote byf; ef; f � the densities of the law of"

t

, relative firstly to the given probability
measure in this stable increment model, secondly to the given probability measure in the
Black-Scholes setting and thirdly the pricing measureP

� for the stable increment model.
Hence,f is the density ofQ, ef of a lognormal distribution with parameters��+r+�2=2; �2,
�

�1, �1 andf � of Q�. Figure 4.24 shows that these densities behave very similarly. The
solid line marks bothf andf �, whereas the dotted line represents the lognormal densitye

f .
Of course, the difference between the distributions should become visible in the tails. This
is indeed so, as the left-hand diagram in Figure 4.25 illustrates. The solid linedesignating
log(f

�

) and the dashed line forlog(f) are hardly distinguishable, whereas the dotted line
for log( ef) indicates that this distribution has thinner tails. The graph on the right in Figure
4.25 shows the differencelog(f �)� log(f).

The fat tails of the stable distribution lead to increased option prices aswe will now see.
As in the previous subsection, we consider here a European call option with strike price
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K = 100, expiring in 1, 10, 60 trading days, respectively. Figures 4.26 – 4.28 correspond
to the Figures 4.20 – 4.22 in the lognormal case. The solid line in the diagrams on the left
represents the time value of the European call for the stable model, the dashed line for the
Black-Scholes case and the dotted horizontal line marks the lower arbitrage bound. On the
right, we plot the difference between the neutral price in the stable and the Black-Scholes
model.

Figure 4.29 illustrates the disagreement between the Black-Scholes model and thedis-
crete stable case from another perspective. By inversion of the Black-Scholes formula,
any European call price from the stable model can be converted into a theoretical implied
Black-Scholes volatility. The graphs in Figure 4.29 show the implied annual volatility of
our European call as a function of the current stock price, the upper diagram one day be-
fore expiration, and the lower left and right graph for a remaining life time of 10and 60
trading days, respectively. The height of the abscissa indicates the annual volatility of the
Black-Scholes model we used for comparisons (i.e.

p

250�

2). What do the curves in Figure
4.29 mean? They indicate the kind of implied volatility smiles a Black-Scholeseconomist
would observe if the real market followed a discrete stable return process with neutral op-
tion prices. Note that these smiles do not imply that either of the models is better from a
statistical point of view. Judgements of that kind can only be based on the analysis of real
market data.

Let us once more examine theu
100

-optimal portfolio for the hedging problem'2

= �1

(i.e. one option has been sold short). Exactly as in Figure 4.23, the diagrams in Figure 4.30
show the number of shares of stock in the optimal hedging portfolio in terms of the current
stock priceS1

0

. The solid line marks the strategy in the stable case, the dashed line the Black-
Scholes hedge and the dotted line in the upper diagram the Black-Scholes hedge 1/2 day
before expiration. All in all, one may say that the optimal portfolios are quite similar to those
in the case of lognormal returns (cf. Figure 4.23). This is surprising and reassuringat the
same time. It indicates that the hedging strategies seem to be quite robust against variation
of the underlying probabilistic model, even if the optionpricesare strongly affected. But
one should be aware that this does not imply that the optimal portfolios perform equally well
in the different models. In the continuous-time Black-Scholes setting the hedge isperfect,
whereas in the discrete lognormal or even stable world there exists a significant chance of
losing money.

Proofs

PROOF OFLEMMA 4.10. By Corollary 3.23, theu
�

-optimal strategy' = ('

0

; '

1

) for A
is any solution to0 =

R

xu

0

�

('

t

� x)K

t

(dx) = Z

1

t�1

R

xu

0

�

(Z

1

t�1

'

1

t

x)Q(dx), i.e. of the form
('

0

;  =Z

1

t�1

), where'0 is arbitrary and is chosen as in Lemma 4.10. The form of the
characteristics now follows easily from Corollary 3.38. �

PROOF OF THE REMARK. For anyt 2 N

� , G 2 B, we haveP �

"

t

jF

t�1

(G) =

R

1

G

(x=Z

1

t�1

)

P

�

�Z

1

t

jF

t�1

(dx) =

R

1

G

(x

2

=Z

1

t�1

)

e

K

t

(d(x

1

; x

2

)) =

e

Q(G). This shows that the"
t

are inde-
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Figure 4.26: Time value and difference to Black-Scholes prices 1 day to maturity
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Figure 4.27: Time value and difference to Black-Scholes prices 10 days to maturity
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Figure 4.28: Time value and difference to Black-Scholes prices 60 days to maturity
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Figure 4.29: Implied Black-Scholes volatilities 1, 10, 60 trading days to maturity
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pendent and have distributioneQ relative toP �. �

PROOF OFCOROLLARY 4.11. Since(�(t; Z1

t

))

t2[0;T ]

and the neutral price process from
Corollary 3.37 are discrete, it suffices to show the claim fort 2 f0; 1; : : : ; Tg. We proceed
by backward induction. Fort = T , we haveZ2

t

= X

2

= g(Z

1

t

) = �(t; Z

1

t

). Now,
assume that equality holds fort 2 f1; 2; : : : ; Tg. By Corollary 3.37, the assumption, and
the preceding proof, we have
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1
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The shape of the characteristics follows from

K

t

(G) = E(1

G

(Z

0

t

� Z

0

t�1

; Z

1

t

� Z

1

t�1

; �(t; Z

1

t

)� �(t� 1; Z

1

t�1

))jF

t�1

)

=

Z

1

G

�

0; x; �(t; Z

1

t�1

(1 + x))� �(t� 1; Z

1

t�1

)

�

P

"

t

jF
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(dx):
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4.5 ARCH-type Models

ARCH-models have become popular for modelling financial time series because theyex-
plain leptokurtosis and persistency of volatility clustering (cf. Bollerslev et al. (1992)). We
focus here on a GARCH(1,1)-M stock price model for which option prices and hedging
strategies have been derived by Duan (1995) and Kallsen & Taqqu (1998). We compare our
formulas qualitatively to theirs. Our setting is similar to that of the previous section. We
work on a stochastic basis(
;F; (F

t

)

t2R

+

; P ), where(F
t

)

t2R

+

is a discrete filtration. The
market consists of two assets 0, 1, namely the bank accountS

0

t

:= e

r[t] and the stock price
processS1 which satisfies the recursive equation
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(4.2)

for anyt 2 N

� , wherer 2 R

+

, S1

0

2 R
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, � : R

+

! R are given and("
t

)

t2N

� is a sequence of
identically distributed random variables such that"

t

is independent ofF
t�1

for anyt 2 N

� .
TheR�

+

-valued stochastic process(�
t

)

t2N

is given by the GARCH(1,1)-M equation
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= ! + �(�
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for any t 2 N n f0; 1g, with �

0

; �

1

; ! 2 R

�

+

, �; � 2 R

+

being fixed constants. The
distributionQ of "

t

is chosen asN(0; 1) or, more generally, any distribution satisfying
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R

e

�jxj

Q(dx) < 1 for any� 2 R

+

. From Lemma 2.20 one easily concludes thatZ =

(Z

0

; Z

1

) is an extended Grigelionis process with extended characteristics(N
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2. If Q = N(0; 1), then it follows easily from Theorem 3.28 that the
market allows no arbitrage.

Remarks.

1. Equation (4.2) can be rewritten as

Z
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The very similar model
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can be treated analogously.

2. If we letQ := N(0; 1) and�(�
t

) := r + ��

t

for some� 2 R

+

, then the above
model is the same as in Duan (1995). Moreover, it coincides for integer times with the
continuous-time ARCH-model in Kallsen & Taqqu (1998), Section 3. More precisely,
it is theN-discretized market (in the sense of Definition 3.53) of the model in Kallsen
& Taqqu.

4.5.1 Derivative Pricing

The following lemma yields the dynamic of(Z0

; Z

1

) under the equivalent measureP � in
Corollary 3.37, leading to neutral derivative prices.
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Remarks.

1. Relative toP �, the("
t

)

t2N

� are no longer i.i.d. random variables. Instead, we have
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(4.3)
P -almost surely for anyt 2 f1; 2; : : : ; Tg and anyG 2 B.

2. The dynamic of(Z1

t

)

t2N

underP � in Lemma 4.12 is not the same as with respect to the
pricing measures of Duan and Kallsen & Taqqu, who obtain lognormal returns under
the EMM as well (cf. Equations (3.10) – (3.12) in Kallsen & Taqqu (1998)). Kallsen
& Taqqu consider a continuous-paths interpolation of the discrete GARCH(1,1)-M
model. Hence, their setting fits into Section 4.2. Indeed, their density of the pricing
measure is the same as in Lemma 4.3 (cf. Lemma 2.1 in Kallsen & Taqqu (1998)).
This is not surprising since their model is complete and hence allows only one equiv-
alent martingale measure. Similarly, one easily shows that the hedging strategy in
Kallsen & Taqqu (1998), Theorem 3.6, is the limit of the portfolio in Lemma 4.1 for
infinite risk aversion�. In this section, however, we are dealing with a discrete stock
price process. The relationship between both settings is essentially the same as be-
tween the Black-Scholes model and its discretized counterpart in Subsection4.4.2.
In fact, this is the special case if the GARCH parameters�; � are0. Therefore, we
conjecture that the option prices and long-term trading strategies behave numerically
very similarly for the discrete GARCH-model and its continuous embedding.

Finally, let us remark that Duan's derivative prices coincide with those in Kallsen
& Taqqu, although he works in the same discrete-time framework as we do in this
section.

Proofs

PROOF OFLEMMA 4.12. Note that Condition 1 in Corollary 3.37 (namely the absence of
arbitrage) depends on the choice of the distributionQ and still has to be checked for any
particular model.
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), where (�
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is as in Lemma 4.12. The form of the extended characteristics of(Z
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) relative toP � now
follows easily from Corollary 3.38. �

PROOF OFREMARK 1. Observe that"
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. Equation (4.3) now follows from a straightforward calculation using Equation (4.3).
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Figure 4.31: Logarithmic 1-day log-return densities

4.6 Exponential Lévy Processes

In this section we want to consider a class of models that generalizes the Black-Scholes
setting by replacing the Wiener process in Equation (4.1) with a quite arbitraryLévy process.
Similarly to Section 4.3 we consider a market with a bank accountS

0

t

= e

rt for anyt 2 R

+

and a stock whose discounted price processZ

1 satisfies the stochastic differential equation
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, W denotes a standard Wiener process andp is a ho-
mogeneous Poisson random measure with compensatorq = � 
 H (cf. JS, II.1.20). We
assume thatH is a fixed measure on(R;B) with
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(x)H(dx) < 1, andH((�1;�1]) = 0. The latter condition ensures thatZ1

does not jump to negative values (cf. Jacod (1979), (6.5)b). Defining
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, Equation (4.4) can be rewritten as
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;

which implies thatZ1 is given by the stochastic exponential ofX, i.e.Z1

= Z

1

0

E (X) (cf.
JS, I.4.61). Note thatX is an integrable Lévy process with the characteristic triplet(� �
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Figure 4.32: Time value and difference to Black-Scholes prices 1 day to maturity
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Figure 4.35: Implied Black-Scholes volatilities 1, 10, 60 trading days to maturity
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L in the sense of Definition 2.4 (cf. Theorem 2.3). By Lemma 2.22,Z = (Z
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Alternatively, we may consider a discounted stock price process of the form
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2. The following lemma shows that the processes of type (4.4) and (4.5) are
essentially the same.

Lemma 4.13 1. Letb�; b�; bp; bH etc. be as above. Define
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,G 2 B. ThenZ1 from Equation (4.4) satisfies Equation (4.5).

Remarks.

1. ForH = 0, we are of course back in the Black-Scholes setting of Section 4.3.
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are given parameters, then Equation (4.4) describes the
process considered in Grünewald & Trautmann (1996), Equation (2).

3. Thehyperbolic stock price modelby Eberlein & Keller (1995) is of the form in Equa-
tion (4.5). Its introduction is based on the fact that hyperbolic distributions provide a
very good fit for daily stock return data. Fix constantsb� 2 R, �; � 2 R
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are Bessel functions of the first and second type, respectively. Then the
stock price process in Eberlein & Keller (1995), Equation (24) is as in Equation (4.5)
if we defineb� := 0, bH(dx) := g
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some" > 0, then the market(Z0
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) meets regularity condition (RC 1). This holds
in particular for the models in the preceding remarks.
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4.6.1 Derivative Pricing

ForZ1 as in Equation (4.4), the following lemma yields the dynamic ofZ = (Z

0

; Z

1

) under
the pricing measure.

Lemma 4.14 LetT 2 N . Assume that the integrability condition in Remark 4 above holds
and that there exists a 2 R solving
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Remarks.

1. UnderP �, the discounted stock price processZ1 has basically the same dynamic as
with respect toP , but relative toe�; e�; eH instead of�; �;H, wheree� := 0, e� := �,
d

e

H

dH

(x) := u

0

�

( x) for anyx 2 R and the real number is given by Equation (4.6).

2. If Z1 is expressed as in Equation (4.5), we have to replace the parametersb�; b�;
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� 1)) for anyx 2 R. Again, is given by Equation (4.6).

3. The existence condition in Lemma 4.14 is satisfied for the stock price process of
Grünewald & Trautmann as well as that of Eberlein & Keller. Note that the pric-
ing measureP � for the hyperbolic model is not the same as the EMMP # by Eber-
lein & Keller, which is based on an Esscher transform. The latter corresponds to a
transformationdH

d

b

H

(x) = e

#x of the Lévy measure (cf. Keller (1997), Lemma 21).

Our transformation of the Lévy measure, on the other hand, is given bydH
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� 1)) if # �  �. This explains why the
option prices derived by Eberlein & Keller coincide very well with our neutral values.

The following lemma is helpful for numerical computation of option prices and hedging
strategies.
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))), whereU is a Lévy process
with the characteristic triplet(�; �2; H)

L as in Remark 2 above. Assume that Condition 5 in
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Theorem 3.36 holds (e.g. if the filtration is the canonical filtration ofS

1 or itsP -completion).
Then the unique neutral price processZ2 for the derivative with terminal valueX2 at T is
of the formZ2
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for anyt 2 [0; T ],G 2 B

3, where 2 R is chosen as in Lemma 4.14.

Remark. One should still check that the regularity condition (RC 1) holds for the enlarged
market from a theoretical point of view.

We perform numerical calculations for the hyperbolic stock price model by means of
Lemma 4.15. The choice of the parametersb� = 0, � = 100, � = 0:005, � = 0 is guided
by estimations for German stock data by Eberlein & Keller (cf. Keller (1997), p.89). For
option pricing we compare the results to a Black-Scholes model (cf. Section 4.3),where the
parameterb� = 0:2387=

p

250 is chosen such that the varianceb�2t of the returnbX
t

coincides
in both models. SincebX is a Lévy process, it follows that the distribution of the dailylog-
returnY

t

:= log(Z

1

t

)� log(Z

1

t�1

) =

b

X

t

�

b

X

t�1

does not depend ont. We denote byf; f �; ef
the densities of the laws ofY

t

relative to the given probabilityP , the pricing measureP �

leading to neutral derivative prices, and the equivalent martingale measure eP corresponding
to the Esscher transform (cf. Eberlein & Keller (1995)), respectively.The hardly visible
dashed curve in the upper diagram of Figure 4.31 representslog(f). Since it is a hyperbola
as opposed e.g. to the parabola in Figure 4.19, the distribution and hence the model is called
hyperbolic. Very close to this line one can observe a solid curve markinglog(f

�

) as well as
log(

e

f), where the latter is also of hyperbolic shape. To emphasize the differences weplot
log(f

�

)� log(f) (solid line) andlog( ef)� log(f) (dashed line) in the lower left diagram, as
well aslog( ef)� log(f

�

) in the lower right graph. Since the difference betweenlog(f) and
log(

e

f) is small, one may expect derivative prices based onP

� and eP to be very close, which
is indeed the case as can be seen in Figures 4.32 – 4.34.
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As in Section 4.4, we consider a European call option with strike priceK = 100 expiring
in 1, 10, 60 trading days, respectively. The dashed curve in the left-hand diagramof Figure
4.32 is the same as that in Figures 4.26 and 4.20. It represents the time value of the option
in the Black-Scholes model as a function of the current stock price. The same holds for
the dashed lines in the left-hand graphs of Figures 4.33 and 4.34, which are hardly visible
since they are covered by solid curves. As before, the horizontal dotted line marks the
lower arbitrage bound. The solid curves in the left diagrams correspond to the optionprice
in the hyperbolic model based on bothP � and eP . Obviously, there is no big difference
between neutral option prices and those from Eberlein & Keller. Even if one believes in
neutral prices, one may therefore use the Esscher transform as an approximationsince it
is easier to compute. For the latter, it is not necessary to evaluate the Lévy-Khintchine
formula numerically in order to obtain the return distribution under the pricing measure.
In the diagrams on the right-hand side we indicate the difference of the hyperbolic option
prices and the Black-Scholes value. The solid lines correspond to neutral prices, whereas
the dashed curves now mark the values obtained by Esscher transform. Observe that the
difference between hyperbolic and Black-Scholes prices is of about the same absolute size
for all time horizons. Relative to the time value of the option, however, it onlyplays a role
for short-lived options or possibly for options far in or out of the money.

As in Section 4.4, we also illustrate the differences by plotting implied Black-Scholes
volatilities in Figure 4.35. The height of the horizontal axis indicates the annual volatility
p

250b�

2. The solid (resp. dashed) curves mark the implied volatilities from the Black-
Scholes formula if we insert the neutral (resp. Eberlein & Keller) option prices from the
hyperbolic model. As before, these curves should not be overinterpreted as a model test,
since they are not data-based. They only indicate the kind of inconsistency a Black-Scholes
economist would observe in a hyperbolic market. Note that the smile is significantfor short-
lived options and flattens out for long times to expiration.

Proofs

PROOF OFLEMMA 4.13. 1. Using the integrability conditions onbH and the mean value
theorem, one easily verifies that

R

(je

x

� 1j

2

^ je

x

� 1j)

b

H(dx) < 1. By JS, II.1.33c,
this implies that the mappingw : 
 � R

+

� R ! R, (!; t; x) 7! e

x

� 1 is in G
loc

(bp).
Sinceq := � 
 H is the compensator ofp, the same argument yields that the mapping

 � R

+

� R ! R, (!; t; x) 7! x is in G
loc

(p). Since�w � (bp � bq)
t

=

R

w(x) bp(ftg �

dx) =

R

x p(ftg � dx) = �x � (p � q)

t

for any t 2 R

+

, it follows from JS, I.4.19 that
w � (bp� bq) = x � (p� q) and hence(Z

t�

w) � (bp� bq) = (Z

t�

x) � (p� q) (cf. JS, II.1.30).
Application of Itô's formula as in Jacod (1979), (3.89) now yields thatZ

1 satisfies Equation
(4.5).

2. Using the integrability conditions onH and the mean value theorem, one easily ver-
ifies that

R

(jxj

2

^ jxj)

b

H(dx) < 1,
R

e

x

1

[1;1)

(x)

b

H(dx) < 1, and thatb� is well-defined.
Sincebq := � 


b

H is the compensator ofbp, it follows that the right-hand side of Equation
(4.5), which we denote byeZ1

t

, has all the properties in that paragraph. Application of State-
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ment 1 in Lemma 4.13 yields thateZ is also a solution to Equation (4.4). Since the SDE
(4.4) has, up to indistinguishability, only one solution, it follows thatZ =

e

Z and the claim
is proved. �

PROOF OF THE REMARKS. 2. We want to show that the integrability conditions forH
hold. It is obvious thatH((�1; 1]) = 0. Moreover,

R

j log(x + 1)j1

(�1;�

1

2

)

(X)H(dx) �

�

R

jxjN(�

J

�

1

2

�

2

J

; �

2

J

)(dx) < 1. Finally, we have that
R

jxjH(dx) < 1 and
R

jxj

3

H(dx) <1 becausex 7! e

3jxj is integrable for any normal distribution.
3. We want to show that the integrability conditions forbH hold. By Keller (1997),

Equation (3.1) the distribution ofbX
1

has the Lebesgue density

f

�;�;�;b�

(x) =

p

�� �

2

2��K

1
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p

�� �

2

)

exp

�

� �

p

�

2

+ (x� b�)

2

+ �(x� b�)

�

;

whereK
1

is the modified Bessel function of the third type with index 1. Forx! �1, we
havef

�;�;�;b�

= O(exp(��jxj + �x)) = O(exp(�4jxj)). Therefore,
R

e

3jxj

P

b

X

1

(dx) < 1

and hence
R

jxjP

b

X

1

(dx) < 1. By Lemma 2.2, Theorem 2.3 and Proposition 2.9, this
implies that
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(jxj

2

^ jxj)

b

H(dx) <1 and
R

e

3x

1

[1;1)

(x)

b

H(dx) <1.
4. One easily verifies that the two integrability conditions are indeed equivalent if H and

b

H are related to each other as in Lemma 4.13. Note that
R

(jxj

2

^ jxj)F

t

(dx) � ((Z

1

t�

)

2

_

jZ

1

t�

j)

R

(jxj

2

^jxj)H(dx) and similarly forb andc. In order to show that integrability condi-
tion (RC 1) holds, it suffices to provesup

s2[0;t]

E((Z
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2(1+")

) � sup

s2[0;t]

E((Z

1

s
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2(1+")
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1 for any t 2 R
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, where the first inequality follows from Fatou's lemma. SinceZ
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=
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1

0

exp(

b

X

t

), it remains to show thatsup
s2[0;t]

E(exp(2(1 + ")

b

X

s

)) < 1. This follows

immediately from the integrability conditions forbH and Proposition 2.9.
For the particular models in the preceding remarks, the integrability conditions are

shown above. �

PROOF OFLEMMA 4.14. Firstly note that Condition 5 (and of course Condition 6 for any
particular claim) still have to be checked in order to apply Theorem 3.36. By Corollary 2.43
and Theorem 2.65, any local martingale has the representation property relativeto the Lévy
processX if the filtration is the canonical filtration ofX (or theP -completion). SinceZ1

andX generate the same filtration, it follows that Condition 5 holds if the given filtration is
the canonical filtration ofS1 or itsP -completion.

For the predictable, locally bounded process' defined by'
t

= (0;  =Z

1

t�

), we have by
definition of thatZ1
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(��r)��(�Z
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+
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(Z

1

t�
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t

x)�1)H(dx) = 0, which
implies that' is au

�

-optimal strategy forA (cf. Corollary 3.23). Hence, the Conditions 1
and 2 in Theorem 3.36 hold. Forx! 0, we have that
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�
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�
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)� 1) + 1 = O(x
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):
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Moreover,u0
�

( x) and henceu0
�

( x)(log(u

0

�

( x))�1)+1 is bounded from above. Finally,
one easily shows thaty(log(y)�1) � �1 for anyy 2 R

�

+

and henceu0
�

( x)(log(u
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( x))�

1)+1 � 0. Together, this implies thatC1
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( x)(log(u
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( x))�1)+1)H(dx) <1.
Observe thatC

T

in Section 3.4, Remark 4 is of the formC
T

= T (

�

2

2

 

2

�

2

+C

1

) <1, which
implies that Condition 3 in Theorem 3.36 holds.

Application of Corollary 3.38 and straightforward calculations yield that the extended
P

�-characteristics of(Z0

; Z

1

) are as claimed in Lemma 4.14. SinceZ1 is strictly positive,
we can apply Lemma 2.22 to
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t
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dX
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= X and obtain that
theP �-extended characteristics ofX are of the form(?; "
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H; 0)

E on [0; T ], where
e� = 0, e� = �, d

e

H

dH

(x) = u

0

�

( x). Hence,X is aP �-Lévy process on[0; T ] with characteris-

tic triplet (e�; e�2; eH)

L (cf. Corollary 2.43 and the subsequent Remark 5). Observe thatd

e

H

dH

is
bounded and hence the integrability condition in Remark 4 holds fore

H instead ofH as well.
As in the proof of that remark, one may now conclude thatsup

s2[0;T ]

E

�

((Z

1

s�

)

2(1+")

) <1,
which yields that the integrability condition in Section 3.4, Remark 5 holds. Hence, Condi-
tion 4 in Theorem 3.36 holds as well. �

PROOF OF THE REMARKS. 1. This has already been shown in the proof of Lemma 4.14.

2. This follows from the first remark and application of Lemma 4.13.

3. Define a mappingh : R ! R by h( ) := �(� � r) +
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 x)H(dx). As in the proof of Theorem 3.22, one shows thath is a differentiable function
with derivativeh0( ) = �(� � r) + ��
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x(u
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( x) � 1)H(dx) and that any of the
three terms in the definition ofh is a convex function of . Moreover, using the dominated
convergence theorem and the continuity ofu

0

�

, we conclude thath0 is continuous. If�2 6= 0

as e.g. in the model considered by Grünewald & Trautmann (1996), then the increasing
mapping 7! �(�� r)+�

2

 has arbitrarily small and large values. Since the third term is
increasing as well, the same must be true forh

0. By continuity ofh0, this implies that there
exists a zero of h0 and we are done.

Now consider the model by Eberlein & Keller, whereh0( ) = �� �
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around 0 (cf. Eberlein & Keller (1995), p.295). Similarly,
one proves that
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( x) � 1)H(dx) ! �1 and henceh0(x) ! 1 for  ! 1. In
the same way, we obtainh0( )! �1 for  ! �1, which implies that there exists a zero
 of h0 in this case as well. �

PROOF OF LEMMA 4.15. By Theorem 3.36 we have thatZ2
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Application of Itô's formula (cf. Theorem 2.25) to the process(t; Z
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and the mapping
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3 , (t; z) 7! (1; z; �(t; z)) yields that the extended characteristics of
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Z = (Z

0

; Z

1

; Z

2

) are of the form in Lemma 4.15, but with a different driftb
2

for the process
Z

2. By Corollary 3.38 applied to(Z0
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) it follows that b
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( x) � 1)H(dx) (for anyt 2 [0; T ]) is the drift ofZ2

under the equivalent martingale measureP

� and hence 0. Therefore,b
2

is indeed as claimed
in Lemma 4.15. To be very strict, Itô's formula applies only to functionsf that are defined
and of classC2 onR � R. The way out is to argue by localization similarly as in the proof
of Corollary 4.7. �

4.7 Bivariate Diffusion Models

A closer look at stock return data reveals that periods of violent price changes alternate with
relatively calm intervals. This behaviour led to the introduction of ARCH andGARCH
models on the one hand and bivariate diffusion settings on the other. For the latter, the
volatility is modelled by a stochastic process following its own dynamic. We consider a
market consisting of only one underlying besides the numeraire. Its discounted price process
is assumed to satisfy the stochastic differential equations
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second SDE descibes the dynamic of the stochastic volatility of Security 1. By Lemma 2.22
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. Note that the processZ1 is P -almost surelyR�
+

-valued, because it is a
stochastic exponential of a continuous process (cf. JS, I.4.64). Assume that� is aR�

+

-valued
process as well.
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4.7.1 Derivative Pricing

In order to compute neutral derivative prices, we need the following

Lemma 4.16 With respect to the pricing measureP � in Theorem 3.36, the extended char-
acteristics(?; "
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Remark. The preceding lemma shows that, relative toP

�, the process(Z0
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; �) has basi-
cally the same dynamic as with respect toP , but withe� := 0, e�(x) := �(x)� ��(x)�(x),
e

� := � instead of�; �; �.

The following lemma helps to calculate option prices explicitly.

Lemma 4.17 Let T 2 R

+

andX2

= g(Z

1

T

), whereg : R ! R is a measurable mapping
such that there areM

1

;M

2

2 R with jg(x)j � M

1

+ M

2

jxj for any x 2 R. Assume
that, for anyz; x 2 R

�

+

, the martingale problem(?; "
(z;x)

;

�

b; �c; 0; 0)

M in R

2 has a unique
solution-measure, where

�

b

t

(�!) :=

0

@

0

�(�!

2

t�

)� ��(�!

2

t�

)�(�!

2

t�

)

1

A

�c

t

(�!) :=

0

@

(�!

1

t�

�!

2

t�

)

2

��(�!

2

t�

)�!

1

t�

(�!

2

t�

)

2

��(�!

2

t�

)�!

1

t�

(�!

2

t�

)

2

(�(�!

2

t�

)�!

2

t�

)

2

1

A

for any(�!; t) = ((�!

1

; �!

2

); t) 2 D

2

� R

+

. Define a functionC
bd

: R

�

+

� R

�

+

� [0; T ] ! R

by

C

bd

(z; x; t) :=

E

�

C

BS

�

z exp

�

�

Z

T�t

0

��

s

d

�

W

s

�

1

2

�

2

Z

T�t

0

��

2

s

ds

�

;

p

1� �

2

Z

T�t

0

��

2

s

ds

��

;

whereC
BS

: R

+

� R

+
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stochastic differential equation
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(cf. Remark 1 below). Then the neutral price process for the derivative with terminal value
X

2 at timeT is given byZ2

t

= C

bd

(Z

1

t
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t

; t) for anyt 2 [0; T ].

Remarks.

1. The last assumption in the preceding lemma means that(

�

W; ��) is an adapted process
on some filtered probability space (not necessarily the given one),�

W is a standard
Wiener process on that space, and�� solves the SDE (4.8).
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2. Recall that, by Theorem 2.30, martingale problems are closely related to stochas-
tic differential equations. In particular note that if( �Z1

; ��) is a solution process to
the martingale problem(?; "

(z;x)

;
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b; �c; 0; 0)

M , then�� is a solution to the martingale
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M . From Theorem 2.30, it follows that the law of�� is a
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BS

(z; �) yields

C
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s

ds

�

; (4.9)

where�� is as in Lemma 4.17 and� := E(

R

T�t

0

��

2

s

ds). Intuitively speaking, the
neutral price of an option can be approximated by the Black-Scholes price where the
constant variance is replaced with the mean over the remaining life time of the option.
The second-order correction also takes the variability of the volatility into account.

4.7.2 Hedging

Consider now a markt with three securities 0, 1, 2 whereZ

0

; Z

1 are as in the previous
subsection andZ2 denotes the neutral price process of an option as in Lemma 4.17. Assume
that you have sold one option and you want to hedge your risk.

Lemma 4.18 Under the assumptions of Lemma 4.17, theu-optimal strategy for the hedging
problem'2

= �1 is given by
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for any t 2 [0; T ), where� := �u

00

(0) is the risk aversion ofu. (As usual,'0 can be
arbitrarily chosen.)

Remark. For� = 0 we have
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Using the approximation in Remark 2 in the previous subsection, we obtain

'

1

t

� D

1

C

BS

(Z

1

t

;�) +

1

2

D

221

C

BS

(z;�)Var

�

Z

T�t

0

��

2

s

ds

�

+

1

�Z

1

t

�(�

t

)

�

2

t

; (4.10)

where� and�� are defined as in that remark.
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Figure 4.36: Time value and difference to Black-Scholes prices 1 day to maturity
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Figure 4.37: Time value and difference to Black-Scholes prices 10 days to maturity
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Figure 4.38: Time value and difference to Black-Scholes prices 60 days to maturity
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Figure 4.39: Implied Black-Scholes volatilities 1, 10, 60 trading days to maturity
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Figure 4.40: Hedging strategy and difference to Black-Scholes 10 days to maturity
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4.7.3 Price Regions and Improved Derivative Models

Let us consider a market with underlyings 0, 1 as in the previous subsections and a derivative
2 as in Lemma 4.17. Price regions and improved derivative models for the price processZ2

are based on(�; �2)-consistent or -approximate price processes. As noted in Chapter 3,
we do not know whether(�; �2)-consistent processes always exist in the continuous-time
framework, let alone how to compute them. Therefore, we focus on approximate prices.

Lemma 4.19 Let the assumptions of Lemma 4.17 hold and fix� > 0, �2 2 R. With respect
to the pricing measureeP in Section 3.5 leading to(�; �2)-approximate price processes, the
extended characteristics(?; "

(0;Z
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)

;

b

b; c; 0; 0)

E of (Z0
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t

; t) for any t 2 [0; T ], whereeb is defined in
Lemma 4.16.

The following lemma helps in calculating option prices explicitly.

Lemma 4.20 Suppose that the conditions in Lemma 4.17 hold and fix� > 0, �2 2 R. More-
over assume that, for any(z; x) 2 R
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+
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, the martingale problem(?; "
(z;x)
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. Define a functioneC
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by eC
bd

(z; x; t) := E(g(

�
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T�t

)), where( �Z1

; ��) is a solution-process to the above martingale
problem. Then the(�; �2)-approximate price process for the derivative with terminal value
X

2 at timeT is given byeZ2

t

=

e

C

bd

(Z

1

t

; �

t

; t) for anyt 2 [0; T ].

Remarks.

1. Since, relative toeP , the dynamic of� is affected by the price processZ1, eC
bd

cannot
be generally expressed in terms ofC

BS

, as is the case in Lemma 4.17.

2. Hedging strategies can now be computed as in Lemma 4.18, but withe

C

bd

instead of
C

bd

. However, the following remark does not not make sense in this case.
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4.7.4 Qualitative Comparison to Black-Scholes

Explicit computation of option prices and hedging strategies necessitates the numerical solu-
tion of stochastic differential equations. This is beyond our scope here. Instead, wewill use
the approximations (4.9) and (4.10) to illustrate how the results deviate qualitatively from
the Black-Scholes case. As in the previous sections, we consider a European calloption
with strike priceK = 100 expiring in 1, 10, 60 trading days, respectively. If we work with
the second-order Taylor approximation for the neutral option price, then Equations (4.9)
and (4.10) show that we need not specify the diffusion equation completely. It suffices to
fix values forE(

R

T

0

�

2

s

ds) andVar(
R

T

0

�

2

s

ds) for the three different time horizons. In the
case that�2 follows a shifted Ornstein-Uhlenbeck process, one can evaluate these quantities
explicitly. In order to obtain Figures 4.36 – 4.40, we inserted the values from a process of
the form

d(�

2

)

t

= ��((�

2

)

t

� (�

2

)) dt+ � dW

t

(4.11)

with � = �

0

:= 0:2387=

p

250, � := 0:1, � := 2 � 10

�5, andW denoting a standard Wiener
process.� and�

0

are chosen such that the mean of�

2

t

coincides with the fixed value in the
Black-Scholes models we consider in Sections 4.4 and 4.6 for comparison. The value� =

0:1 intuitively means that a volatility shock has a half-life of about�

�1

log(2) � 6:93 trading
days. We choose a very small value of� for two reasons. Firstly, the reader may already
have observed that a shifted Ornstein-Uhlenbeck process is inadequate to model the positive
quantity�2

t

. Therefore, we consider Equation (4.11) only as a reasonable approximation
in a neighbourhood of�2. By choosing a small� we ensure that(�2)

t

hardly leaves this
neighbourhood. Secondly, the validity of the Formulas (4.9) and (4.10) is restricted to small
values ofVar(

R

T

0

�

2

s

ds), which is another reason to let� be small. As a consequence, we are
almost back in the constant volatility setting of Section 4.3 and therefore theoption prices
and hedging strategies hardly differ from the Black-Scholes model.

Indeed, the diagrams on the left in Figures 4.36 – 4.38 show the time value of the call
in the bivariate diffusion setting as well as the Black-Scholes price relative to volatility�
as a function of the current stock price. As in the Figures 4.20 – 4.22 and 4.32 – 4.34,
the horizontal dotted lines mark lower arbitrage bounds. In the diagrams on the right we
plot the tiny difference between the neutral option prices in the bivariate diffusion setting
and their Black-Scholes counterparts. In contrast to the previous section, wherewe use
realistic parameters for the hyperbolic distribution, these price differences on the right are
not meant to contain quantitative information, since the diffusion model for the volatility is
not obtained by statistical means. On the contrary, we choose� excessively small. Maybe
surprisingly, the M-shape (or W-shape if you rotate the graphs) of the price differences as
well as the implied Black-Scholes volatility smiles in Figure 4.39 look very similar to the
corresponding curves in Figures 4.32 – 4.34 and 4.35 for the hyperbolic setting, although
the models are of quite different kind. However, in the hyperbolic case the deviationfrom
Black-Scholes is most pronounced for short-lived options, whereas in the bivariate diffusion
setting the differences seem to reach their maximum later, as the sizeof the smile in Figure
4.39 and also the diagrams in Figures 4.36 – 4.38 indicate. Note that the hight of the abscissa
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in Figure 4.39 corresponds as in the previous sections to the annual volatility
p

250�

2 of the
Black-Scholes model we use for comparison.

In the left-hand diagram of Figure 4.40 we plot the number of stocks in a hedging port-
folio as a function of the current stock price. The task is to hedge�1 European call options
10 trading days before expiration. We make use of the approximation (4.10) in the case of
infinite risk aversion�. The curve in the right-hand diagram marks the difference between
the hedging portfolio in the bivariate diffusion and the Black-Scholes model.

Let us stress once more that the Figures 4.36 – 4.40 can only give a qualitative picture. It
would be disirable to compare prices and strategies for model parameters thatwere obtained
by real – and preferably the same – market data.

Proofs

PROOF OFLEMMA 4.16. Note that the Conditions 1–6 in Theorem 3.36 depend on the
particular model and have to be checked.

By Corollary 3.23, a strategy' = ('

0

; '

1

) is u
�

-optimal for A if and only if b1
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. The shape of the extendedP �-characteristics of(Z0
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now follows from Corollary 3.38. �

Proposition 4.21 LetW be aR-valued standard Wiener process on a filtered probability
space(
;F; (F

t

)

t2R

+

; P ), and letC be a sub-�-field ofF that is independent ofW . More-
over, denote byY a continuous adapted process that isC-measurable. Then we have for any
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PROOF. First step:Suppose that the predictable processY is of the formY =
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where the asterisk denotes convolution.
Second step:For Y as in the assertion, there exists a sequence(Y

k
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k2N

of processes
as in the first step withY k
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uniformly on [0; T ] P -almost surely and
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P
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(!): On the other hand, we have
R

T

0

(Y

k

s

)

2

ds

k!1

�!

R

T

0

(Y

s

)

2

ds P -almost surely,

which implies thatN(0;

R

T

0

(Y

k

s

(!))

2

ds)

k!1

�! N(0;

R

T

0

(Y

s

(!))

2

ds) weakly forP -almost
all ! 2 
 (by the continuity theorem, cf. Billingsley (1978), Theorem 26.3). The first step
and the uniqueness of the weak limit now yield the claim. �

PROOF OF LEMMA 4.17. Note that the conditions 1–5 in Theorem 3.36 depend on the
particular model and have to be checked.

By Theorem 3.36 we have thatZ2
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 � [0; T ]. By the argument in
Remark 2 there exists a probability space(
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(!) instead ofx. It is easy to show that one can choose the space such that it also
supports another standard Wiener processW being independent of( �W; ��). Now define the
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;F) cf. Condition 5 in Theorem
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PROOF OF REMARK 4. Note that this remark only makes sense if the mappingv 7!

C
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(z; v) is twice differentiable and the second order Taylor approximation
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PROOF OFLEMMA 4.18. Firstly, note that we assume here without proof that the condi-
tions in Theorem 3.36 hold for the model under consideration, and that the mappingC

bd

is
of classC2.

By application of Itô's formula (cf. Theorem 2.25) to the process(t; Z
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for anyt 2 [0; T ). By Lemma 4.1 theu
�

-optimal strategy for the hedging problem'2
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, which is of the form in Lemma 4.18. To be very strict, Itô's

formula can only be applied iff is defined andC2 onR3 . The way out is to argue by local-
ization as in the proof of Corollary 4.7. �

PROOF OF THEREMARK . Note that this remark only makes sense if the mapping(z; v) 7!

C

BS

(z; v) is of classC1;2 . The approximation for'1 then follows by differentiation. �

PROOF OF LEMMA 4.19. Note that the assumptions leading to Definition 3.43 and to
Lemma 4.17 depend on the particular model and have to be checked.

Similarly as in the proof of Lemma 4.18, one verifies that the strategy' in step 3 on
page 123 is given by'1
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for anyt 2 [0; T ]. (Observe that, here, the superscript 2 corresponds to�, whereas in (4.12),
(4.13), this was the case for the superscript 3.) Sorting terms yields the claim. �

PROOF OF LEMMA 4.20. Note that the assumptions mentioned in the proof of Lemma 4.19
must be shown for any particular model.

By Definition 3.43 we have thateZ2

t

=

e

E(g(Z

1

T

)jF

t

) =

R

g(�!

1

T�t

)

e

P

(Z

1

t+s

;�

t+s

)

s2R

+

jF

t

(d(�!

1

; �!

2

)) P -almost surely for anyt 2 [0; T ]. Note thatZ1 and� are eP -almost surely
positive becauseP and eP are equivalent. Fix(!; t) 2 
 � [0; T ]. The application of
Lemma 2.33 yields thateP (Z

1

t+s

;�

t+s

)

s2R

+

jF

t

(!) is a solution-measure to the martingale prob-
lem(?; "

(Z

1

t

(!);�

t

(!))

;

�

b; �c; 0; 0)

M . Since this martingale problem is assumed to have a unique
solution-measure, the claim follows. �

4.8 Keller's Model

This section is an exception in that we do not present any pricing measure, derivative prices,
or hedging strategies. We only want to show that advanced models incorporating a number
of features of real financial time series can often be easily expressed in terms of extended
characteristics and hence within the framework of Chapter 3. However, explicit numerical
calculations of prices, strategies etc. are rarely easily produced in models with complicated
dependence structures and are beyond our scope here.

As an example we consider a market model by Keller (1997), Subsection 4.4.1, which
consists, as in the previous sections, of a bank accountS

0 and a stockS1. Since real markets
are often closed at night, no trade takes place in this period. In Keller's continuous-time
model this is taken into account by shrinking the nights to intervals of length zero at integer
times. Hence, an overnight price change corresponds to a jump at the respectiveinteger
time. The money market account is given byS0

t

= exp(r

d

t + r

n

[t]), wherer
d

; r

n

2 R are
the intradayand theovernight interest rate, respectively. Similarly, the stock price process
satisfiesS1

t

= S

1

0

exp(R

d

t

+ R

n

t

), whereRd is the intraday return process. Theovernight
return processRn is assumed to be of the formRn

t

=

P

[t]

k=1

�R

n

k

, where(�Rn

k

)

k2N

� is a
sequence of i.i.d. random variables whose distributionQ satisfies

R

e

jxj

Q(dx) <1. During
business hours the stock price jumps randomly at random times. More specifically,letRd

:=

P

l2N

1

f�

l

�tg

�

l

, where(�
l

)

l2N

is an increasing sequence of stopping times with�

l

" 1 P -
almost surely and(�

l

)

l2N

a sequence ofR n f0g-valued random variables. Conditionally on
the past, the distribution of jump times and sizes is given by

P
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)
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for any l 2 N , whereExp
'
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denotes an exponential distribution with parameter'
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and
the processes(h

l

)

l2N
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are recursively defined by
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for some fixed constantsv
0

; �

0

2 R

�

+

, �; �; ; � 2 R

+

, �
0

:= 0, �
�1

:= �

0

:= 0. Moreover,
R

n

and(�
l

; �

l

)

l2N

are assumed to be independent. In this market model the return process
exhibits normally distributed jumps seperated by exponential waiting times. The activity or
volatility of the market is reflected firstly by the varianceh

l

of the jump height and secondly
by the parameter'

l

of the distribution for the waiting time�
l

� �

l�1

between successive
jumps. The recursive definition of these parameters intuitively means that periods of high
resp. low activity are likely to persist. This is the type of observed market behaviour that
also led to the development of ARCH- and GARCH-models. The following lemmashows
how to express this market model in the language of Chapter 2.

Lemma 4.22 As usual, we define the discounted price processes byZ

0

:= S

0

=S

0

= 1,
Z

1

:= S

1

=S

0. Assume that the filtration of the underlying stochastic basis is the canonical
filtration of S1 (or equivalently(S0

; S

1

), (Z0

; Z

1

), Z1). ThenZ := (Z

0

; Z

1

) is an extended
Grigelionis process whose extended characteristics(N
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for anyt 2 R

+

,G 2 B

2.

Proofs

PROOF OF LEMMA 4.22. First step: We will show thatRd is an extended Grigelionis
process with extended characteristics(N

�

; "

0

; b

d

; 0; F

d

; 0)

E, where
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d
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,G 2 B.
By definition we have thatRd

= x � �, where the random measure� is given by
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(ds; dx). Since�
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6= 0, it follows that the smallest fil-
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for which � is optional (in the sense of JS, III.1.25) coincides with the
canonical filtration ofRd. Relative to this filtration, the compensator� of � is given by
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for any t 2 R

+

, G 2 B (cf. JS, III.1.33). Since(Exp
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Therefore we can writeRd as
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;

where the first term is predictable and of finite variation. Since� is the measure of jumps of
R

d, we can conclude that, relative to(G
t

)

t2R

+

, Rd is an extended Grigelionis process with
the above characteristics. SinceRd andRn are independent, it follows from Lemma 2.23
that this is also true relative to the canonical filtration ofZ

1 (which is generated byRd and
R

n).
Second step:By Lemma 2.20,Rn is an extended Grigelionis process with extended

characteristics(N� ; "
0

; 0; 0; 0; Q)

E.
Third step:Note thatZ0

t

= 1 andZ1

t

= S

1

0

exp(R
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+R

n

� r

d

t� r
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[t]) for anyt 2 R
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.
We will now apply Itô's formula (cf. Theorem 2.25) to the extended Grigelionis process
Y = (t; [t]; R

d
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; R
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)

t2R

+

and the mappingf : R
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)). Straightforward calculations yield that the extended characteristics of
(Z
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; Z

1

) = f(Y ) are indeed of the claimed form.
It remains to check the integrability conditions in Remark 1 following Theorem 2.25

to make sure thatf(Y ) is a special semimartingale. Firstly note that
R

jxjK

t

(dx) is finite
for any t 2 N

� because
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Q(dx) < 1. Moreover, the local boundedness ofZ1 and
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imply that
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surely for anyl 2 N . Since by assumption�

l

" 1 P -almost surely, we have in particular
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(jxj

2

^ jxj)F

s

(dx) ds <1 and the proof is complete. �

4.9 Interest Rate Models

Practically all the examples considered so far consist of or are inspired bystock price mod-
els. This is not to suggest that our approach only works or is mainly aimed at this kind
of market. On the contrary, the general framework in Chapter 3 gives no preference to
any particular kind of security. To demonstrate this we consider now short-term interest
rate models and their implications on zero-coupon bond prices. More specifically,we fo-
cus on the Vasicek and the Cox-Ingersoll-Ross model (cf. Björk (1997), Section 3). The
setting is as follows. The only underlying in our market is a short-term fixed-income in-
vestmentS0

t

= exp(

R

t

0

r

s

ds) (i.e. satisfyingdS0

t

= S

0

t

r

t

dt), which will also serve as the
numeraire. In contrast to the previous sections, the instantaneous interest rate is now a con-
tinuous stochastic process(r

t

)

t2R

+

, which is assumed to be a solution to the diffusion-type
SDE

dr

t

= �(r

t

) dt+ �(r

t

) dW

t

; (4.14)

where� : R ! R and� : R ! R

+

are given continuous functions,W denotes a stan-
dard Wiener process andr

0

2 R is fixed. If we let�(r
t

) := �(# � r

t

) and�(r
t

) := �
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Figure 4.41: Bond prices without and with external supply
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Figure 4.42: Forward rates without external supply
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Figure 4.43: Forward rates with external supply
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for some�; #; � 2 R

+

, we obtain theVasicek model. In this case, the solution to the SDE
(4.14) is a shifted Ornstein-Uhlenbeck process. If, on the other hand, the coefficients are
chosen as�(r

t

) := � � �r

t

and�(r
t

) := �

p

r

t

_ 0 for some�; � 2 R

+

, � 2 R

�

+

, then
Equation (4.14) yields the so-calledCox-Ingersoll-Ross model. The discounted numeraire
is, as usually, given byZ0

:= S

0

=S

0

= 1. The stochastic process(r
t

)

t2R

+

is, by Lemma
2.22, an extended Grigelionis process whose extended characteristics(?; "

r

0

; b; c; 0; 0)

E are
given byb

t

= �(r

t

), c
t

= (�(r

t

))

2 for anyt 2 R

+

.

Remark. In the Vasicek- and the Cox-Ingersoll-Ross case the SDE (4.14) and equivalently
the corresponding martingale problem in the sense of Theorem 2.30 has a unique solution-
measure. In the Cox-Ingersoll-Ross model the solution always stays positive, whereas this
is not the case in the Vasicek model.

4.9.1 Pricing of Zero Coupon Bonds

Since the numeraireZ0 is the only security in the market, one easily sees that Conditions
1–4 in Theorem 3.36 are met and that the pricing measure equals the given probability
measureP . Assume from now on that the filtration of the underlying stochastic basis
(
;F; (F

t

)

t2R

+

; P ) is the canonical filtration ofS0 (or equivalentlyr) or itsP -completion.
By Theorem 2.65 this implies that Condition 5 in Theorem 3.36 holds as well. To us,zero-
coupon bondsare securities yielding a payout 1 at some future timet. As their discounted
terminal value is given by theF

t

-measurable random variable(S0

t

)

�1, we can treat them as
derivatives in the sense of Section 3.4. Since the dynamic of the model is unchanged under
the pricing measure, we obtain the well-known zero-coupon bond price formulas as shown
in the following

Lemma 4.23 Fix t
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; : : : ; t
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2 R and denote byX i

:= (S
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)

�1 the discounted terminal
payout of a zero-coupon bond maturing at timet
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for i = 1; : : : ; n. Then we have

1. In the Vasicek model the processesZ

1

; : : : ; Z

n (resp.S1
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], are neutral derivative price processes for the bonds
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n are the only neutral price processes
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; : : : ; Z
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) meets regularity condition (RC 1).

2. In the Cox-Ingersoll-Ross model there are unique neutral bond price processesZ

1

;

: : : ; Z

n (resp.S1

; : : : ; S

n in undiscounted terms) for the bonds maturing at times
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t
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; : : : ; t

n

. These are given by
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+ 2�

2. Moreover, the extended marketZ := (Z

0

; : : : ; Z

n

) meets
regularity condition (RC 1).

4.9.2 Improved Bond Pricing

Approximate derivative prices in the sense of Sections 3.5 and 3.6 are based on alternative
pricing measures. Since these are equivalent to the original probability measureP , Gir-
sanov's theorem yields that, relative to these distributions, the extended characteristics ofr
are of the form(?; "

r

0

;

e

b; c; 0; 0)

E for some drift processeb. The fact that this new drifteb
t

is
no more necessarily a deterministic function ofr complicates explicit numerical computa-
tions. Of course the same is true for consistent derivative prices in the sense of Sections 3.5
and 3.6, but here we face the additional and more serious obstacle that we do not yet know
how to obtain these prices at all in a continuous-time setting. Therefore it issurprising that,
under assumptions that are close to(�; �

1

; : : : ; �

n

)-consistency, we end up with a simple
dynamic of the short-term interest rate under the corresponding pricing measure, namely
theHull-White model(cf. Björk (1997), Section 3). The general setting is as follows. Fix
t
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; : : : ; t

n

2 R

+

andX1

; : : : ; X

n as in Lemma 4.23. Moreover, let� > 0, �1; : : : ; �n 2 R.
Instead of considering consistent or approximate price processes corresponding to constant
external supply�1; : : : ; �n, we focus on stochastic external supply�1= eZ1
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sense of Remark 3 following Definition 3.47, whereeZ1
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prices or the neutral processes from Lemma 4.23. This looks like a very different thing, but
in fact is not. The discounted bonds are generally securities of very low volatility and drift.
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n . The reason for this approximation becomes apparent
in the following
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for anyt 2 [0; t

i

] and eZi

t
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, whereZ1
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n here denote
the processes from Statement 1 in Lemma 4.23.

2. Suppose we work with the Cox-Ingersoll-Ross model for the short rater. Define the
mappinge� : R
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is an extended Grigelionis process whose extended char-
acteristics(?; "

r

0

;

e

b; c; 0; 0)

E are given byeb
t

= ��

e

�(t)r

t

for anyt 2 R

+

.
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The short-term interest rate dynamic under the pricing measureP

� is basically the same as
relative toP , but with time-dependent drift parameterse#(t), e�(t) instead of the fixed values
#, �. Therefore, we obtain a special case of the Hull-White extension of the Vasicek- resp.
the Cox-Ingersoll-Ross model (cf. Björk (1997), Chapter 3). Since the term structure in
Hull-White-type settings is affine, they are computationally well tractable (cf. Björk (1997),
Subsection 3.4).

For the explicit construction of an improved bond price model one may now proceed
as indicated in Subsection 1.2.6 or Section 3.6 with the definition of(p

1

; : : : ; p

n

)-consistent
prices. One observes current bond pricesS

1

0

; : : : ; S

n

0

on the real market and chooses supply
parameters�1; : : : ; �n in such a way that the theoretical(�; �

1

=Z

1

t

; : : : ; �

n

=Z

n

t

)-approximate
prices from Lemma 4.24 and the observed bond prices coincide. This procedure is known
asinverting the yield curve(cf. Björk (1997), Subsection 3.5).

The common approach to the inversion of the yield curve faces a theoretical problem.
The set of all Hull-White-type dynamics under the pricing measure that are consistent with
the given Vasicek- or Cox-Ingersoll-Ross model is obtained by substituting deterministic
time-dependent drift parameters�(t)(#(t) � r

t

) (resp.�(t) � �(t)r

t

)) for the fixed values
�(# � r

t

) (resp.� � �r

t

)) and letting the diffusion coefficient remain unchanged. Since
we are given only a finite number of initial bond prices, there is a great degree of flexibility
for the functions� etc., and their actual choice is often made ad-hoc. Our approach, on the
other hand, is based on concrete assumptions and the number of free parameters�

1

; : : : ; �

n

is equal to that of observable bond prices.

Let us put it another way. Suppose you are looking for a term structure model that is con-
sistent with the observed zero-coupon bond prices. If you believe that the short-term interest
rate is well described by the Vasicek model (resp. the Cox-Ingersoll-Ross model), that spec-
ulators on the market invest inu

�

-optimal portfolios and that the external supply/demand of
any bond is approximately constant through time, then relative to the pricing measure the
short-term interest rate dynamic is of the particular Hull-White form givenin Lemma 4.24.
Note that if you actually invert the yield curve in this manner, the resultingpricing mea-
sure, bond prices and drift parameters depend neither on the risk aversion� nor at all on the
choice of the utility functionu. Indeed, the only property ofu entering the Radon-Nikodým
densityL

1

is the risk aversion�. But arguing as in Definition 3.46, one may assume� = 1

w.l.o.g.

In Figures 4.41 – 4.43 we examine the Vasicek- and the Cox-Ingersoll-Ross model nu-
merically. The solid curves in Figure 4.41 correspond to the Vasicek model with parameters
# = 0:0616, � = 0:3636, � = 0:00229, whereas the dashed lines are based on a Cox-
Ingersoll-Ross model with� = 0:0254, � = 0:4105, � = 0:0898. In both cases time is
measured in years. The parameter sets have been estimated by Annette Ehret for the same
30-year set of interest rate data. The left-hand diagram in Figure 4.41 shows neutral bond
prices as a function of time to maturity in years. The upper, middle, resp. lower curve cor-
responds to an initial annual interest rater

0

of 3%, 6%, 9%, respectively. Now we consider
a bond market with two bonds maturing att

1

= 1 andt
2

= 3 whose external supplies equal
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�

1

=Z

1

= �1 and�2=Z2

= 0:3 (relative to� = 1). Intuitively speaking, this means that
for a period of one year there is a strong net investment in bonds, whereas for the subse-
quent two years many traders seem to finance themselves by shorting bonds. The resulting
(1; �

1

=Z

1

; �

2

=Z

2

)-approximate bond prices and, in addition, the neutral bond price of any
further bond introduced in this enlarged market(Z

0

;

e

Z

1

;

e

Z

2

) are shown in the right-hand di-
agram of Figure 4.41. Again, the upper, middle, lower curve correspond to an initial interest
rater

0

of 3%, 6%, 9%, respectively.
The differences become much more apparent if we turn toforward rates. Strictly speak-

ing, forward rates are only defined in a market with a continuum of bonds for any terminal
date, and thus not in our setting with its finite amount of securities. However,in the mar-
kets considered above there exists a functionf : R

+

! R such that the initial price of
any bond that is already in the market or is newly introduced to its neutral price is given
by exp(�

R

t

0

f(s) ds), wheret 2 R

+

denotes its maturity. This is in line with the usual
definition of forward rates at time0 (cf. Björk (1997), Section 2). Figure 4.42 shows the
forward rates corresponding to the left-hand diagram in Figure 4.41, i.e. to a market where
any bond is traded at its neutral price. Here as well as in Figure 4.43, the left-hand diagram
belongs to the Vasicek model, whereas the right-hand graph shows Cox-Ingersoll-Ross for-
ward rates. Obviously, the upper curve now relates to the high initial interest rate and vice
versa. A comparison of the diagrams shows that the forward rates are very similar, but con-
verge slightly more quickly to an average value in the Cox-Ingersoll-Ross model.In Figure
4.43 the forward rates for the(1; �1=Z1

; �

2

=Z

2

)-approximate market(Z0

;

e

Z

1

;

e

Z

2

) are given.
They correspond to the right-hand diagram in Figure 4.41 or, in other words, to a bond mar-
ket with non-zero supply exactly for the two bonds maturing att

1

= 1 andt
2

= 3. As one
may expect, the forward rate is comparatively small for the period with net supply and high
for the subsequent time of excess demand of bonds.

Promoted by the Heath-Jarrow-Morton approach to fixed-income markets, it is very pop-
ular to model these with a continuum of bonds for any conceivable maturity. From a theo-
retical point of view this contradicts our approach, which is based on just the finite number
of assets that are really traded in the market. However, it may still be an interesting question
to what extent the notions and results from Chapter 3 can be extended to a setting with an
infinite number of securities.

Proofs

PROOF OF THEREMARK . For the Vasicek case this follows immediately from Corollary
2.41. The statements for the Cox-Ingersoll-Ross model follow from Ikeda & Watanabe
(1989), Example IV.8.2. �

PROOF OFLEMMA 4.23. 1. First step:By Lamberton & Lapeyre (1996), Subsection 6.2.1
the random variablesX1

; : : : ; X

n are integrable with expectationE(X i

) = E(exp(�

R

t

i

0

r

s

ds)) = exp(�t

i

R(t

i

; r

0

)) for i = 1; : : : ; n. Moreover, we haveE(X i

jF

t

) = (S

0

t

)

�1

E(exp(

R

t

i

t

r

s

ds)jF

t

) = (S

0

t

)

�1

exp(�(t

i

� t)R(t

i

� t; r

t

)) for any i 2 f1; : : : ; ng, t 2 [0; t

i

]. In
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particular, the processesZ1

; : : : ; Z

n defined by Equation (3.11) are continuous semimartin-
gales of the form in Equation (4.15). In particular, the existence conditions in Remark 6
following Theorem 3.36 are met, which implies that these processes are neutral derivative
price processes.

Second step:We will now show that the extended marketZ = (Z

0

; : : : ; Z

n

) meets inte-
grability condition (RC 1). Fixi; j 2 f1; : : : ; ng. We define a mappingf : [0; t

i

^t

j

)�R

�

+

�

R ! R

2 of classC2 by f(t; x; r) := (

1

x

exp(�(t

i

� t)R(t

i

� t; r));

1

x

exp(�(t

j

� t)R(t

j

�

t; r))). For t < t

i

^ t

j

, we thus have(Zi

t

; Z

j

t

) = f(t; S

0

t

; r

t

). If (?; "
(1;Z

1

0

;:::;Z

n

0

)

; b; c; 0; 0)

E

denotes the extended characteristics ofZ, then we haveb = 0 sinceZ is aP -local martin-
gale, andcij

t

= 0 for t � t

i

^ t

j

becauseZi is constant on[t
i

;1). In order to computecij
t

for
t < t

i

^ t

j

, we apply Itô's formula (cf. Theorem 2.25) to the extended Grigelionis process
(t; S

0

t

; r

t

)

t2R

+

and the mappingf above. This yields

c

ij

t

= D

3

f

1

(t; S

0

t

; r

t

)�

2

D

3

f

2

(t; S

0

t

; r

t

) = Z

i

t

Z

j

t

�

2

�

2

(1� e

��(t

i

�t)

)(1� e

��(t

j

�t)

)

for any t < t

i

^ t

j

. Sincef is not really defined andC2 on R

3 , and hence Theorem
2.25 is not literally applicable, we refer the reader to the proof of Corollary 4.7 for an
exact argumentation by localization. Since(cij

t

)

2

�

�

4

�

4

(Z

i

t

)

2

(Z

j

t

)

2, Schwarz's inequality

yields thatE(jcij
t

j

2

) �

�

4

�

4

supfE((Z

k

s

)

4

) : k 2 f1; : : : ; ng; s 2 [0; T ]g for any i; j 2
f1; : : : ; ng, t 2 R

+

. SinceZi

t

= E(X

i

jF

t

), Jensen's inequality implies thatE((Zi

t

)

4

) �

E((X

i

)

4

) = E(exp(�

R

t

0

4r

s

ds)). Since(4r
t

)

t2R

+

solves the same SDE as(r
t

)

t2R

+

but
with 4�; 4� instead of�; �, it follows from Lamberton & Lapeyre (1996), Subsection 6.2.1
thatE(exp(�

R

t

i

0

4r

s

ds)) = exp(�t

i

e

R(t

i

; 4r

0

)), whereeR is defined asR in Lemma 4.23,
but with4#; 4� instead of#; �. As a uniform upper bound, we thus have

E((Z

i

t

)

4

) � exp

�

T

�

4# +

16�

2

2�

2

�

+

1

�

�

4# +

16�

2

2�

2

+ 4jr

0

j+

16�

2

4�

2

��

=:M 2 R

+

for any i 2 f1; : : : ; ng and anyt 2 R

+

. The integrability condition (RC 1) now follows
easily.

Third step:We will show that there are no further neutral price processes such that the
extended market meets regularity condition (RC 1). Otherwise, let(

e

Z

1

; : : : ;

e

Z

n

) be such
processes. By Corollary 3.23 and theu

�

-optimality of the empty portfolio, it follows that
e

Z �

e

Z

0

is a local martingale. Since any local martingale has the representation property
relative to the continuous processr (cf. Theorem 2.65), it follows thateZ � e

Z

0

has no dis-
continuous local martingale part, i.e.eZ =

e

Z

0

+

e

Z

C . The regularity condition (RC 1) implies
thath eZi;c

;

e

Z

i;c

i

T

=:

R

T

0

ec

ii

t

dt is integrable and henceeZi;c is a square-integrable martingale
for i = 1; : : : ; n (cf. JS, I.4.50). SinceeZi

0

isF
0

-measurable and hence deterministic,eZi is a
martingale as well. It follows thatZi and eZi are martingales with the same terminal random
variableX i, and henceZ =

e

Z

i for i = 1; : : : ; n.
2. First step:In the Cox-Ingersoll-Ross model, the interest rate process is positive and

hence0 � X

i

� 1 for i = 1; : : : ; n. Therefore, it follows from Theorem 3.36 that there
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exist unique neutral derivative price processesZ

1

; : : : ; Z

n which are given by

Z

i

t

= E(X

i

jF

t

) = (S

0

t

)

�1

E

�

exp

�

�

Z

t

i

t

r

s

ds

�

�

�

�

F

t

�

:

The explicit formula for the expected value can be found in Lamberton & Lapeyre (1996),
Subsection 6.2.2.

Second step:We will show that the extended marketZ meets integrability condition (RC
1). Fix i; j 2 f1; : : : ; ng. We define a mappingf : [0; t

i

^ t

j

)� R

�

+

� R ! R

2 of classC2

by

f(t; x; r) :=

�

1

x

exp

�

2�

�

2

log

�

2 exp(

1

2

(t

i

� t)( + �))

 � � + ( + �) exp((t

i

� t))

�

� r

2(exp((t

i

� t))� 1)

 � � + ( + �) exp((t

i

� t))

�

;

1

x

exp

�

2�

�

2

log

�

2 exp(

1

2

(t

j

� t)( + �))

 � � + ( + �) exp((t

j

� t))

�

� r

2(exp((t

j

� t))� 1)

 � � + ( + �) exp((t

j

� t))

�

�

By the same arguments as in the second step in the first part of the proof, we obtainfor the
extended characteristics(?; "

(1;Z

1

0

;:::;Z

n

0

)

; b; c; 0; 0)

E of Z thatb = 0, cij
t

= 0 for t � t

i

^ t

j

and

c

ij

t

= Z

i

t

Z

j

t

�

2

r

t

2(exp((t

i

� t))� 1)

 � � + ( + �) exp((t

i

� t))

2(exp((t

j

� t))� 1)

 � � + ( + �) exp((t

j

� t))

for anyt 2 [0; t

i

^ t

j

). SincejZi

j � 1 and

sup

n

�

�

�

2(exp((t

i

� t))� 1)

 � � + ( + �) exp((t

i

� t))

�

�

�

: i 2 f1; : : : ; ng; t 2 [0; t

i

]

o

�

2(exp(T )� 1)

 � �

=:M 2 R

+

;

we conclude thatjcij
t

j

2

� �

4

M

4

(r

t

)

2 for any i; j 2 f1; : : : ; ng, t 2 R

+

. If we set
L :=

�

2

4�

(1 � e

��t

), then it follows from Lamberton & Lapeyre (1996), p.131 thatr

t

=L is

�

2-distributed with4�=�2 degrees of freedom and noncentrality parameter� :=

4r

0

�

�

2

(e

�t

�1)

.
Therefore

E

��

r

t

L

�

2

�

= Var

�

r

t

L

�

+

�

E

�

r

t

L

��

2

= 2

4�

�

2

+ 4� +

�

4�

�

2

+ �

�

2

=

16

�

2

�

�

2

+

r

0

�

e

�t

� 1

+

�

� +

r

0

�

e

�t

� 1

�

2

�

(cf. Johnson & Kotz (1970b), p.134, Equation (13)) and hence

E(r

2

t

) = �

2

�

�(1 + 2�)

2�

2

(1� e

��t

)

2

+

r

0

�

e

��t

(1� e

��t

)(1 + 2�) + r

2

0

e

�2�t

�

� �

2

�

�(1 + 2�)

2�

2

+

r

0

�

(1 + 2�) + 2r

2

0

�

=:

f

M 2 R

+
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for any t 2 R

+

. It follows thatE(jcij
t

j

2

) � �

4

M

4

f

M for any i; j 2 f1; : : : ; ng, t 2 R

+

,
which yields (RC 1). �

PROOF OF LEMMA 4.24. 1. First step: For anyi 2 f1; : : : ; ng define the functions
A

i

: [0; T ]! R, Bi

: [0; T ]! R by

A

i

(t) =

Z

t

i

t^t

i

(1� e

��(t

i

�s)

)

�

1

2

�

2

�

2

(1� e

��(t

i

�s)

)�

e

#(s)

�

ds

B

i

(t) =

1

�

(1� e

��(t

i

�t)

)1

[0;t

i

]

(t):

Observe thatAi(t) = �

R

T

t

(�

e

#(s)B

i

(s) �

1

2

�

2

(B

i

(s))

2

) ds andBi

(t) =

R

t

i

^t

t

(�B

i

(s) +

1) ds for any t 2 [0; T ]. Fix i; j 2 f1; : : : ; ng. We define a mappingf : R

�

+

� R

5

! R

3

of classC2 by f(x; r; u
1

; v

1

; u

2

; v

2

) = (

1

x

exp(u

1

� rv

1

);

1

x

exp(u

2

� rv

2

); r). For any
t � t

i

^ t

j

we have( eZi

t

;

e

Z

j

t

; r) = f(S

0

t

; r

t

; A

i

(t); B

i

(t); A

j

(t); B

j

(t)). For i = j appli-
cation of Itô's formula (cf. Theorem 2.25) yields thateZi is a continuous Grigelionis process
on [0; t

i

] and hence onR
+

becauseeZi

= (

e

Z

i

)

t

i . Therefore,eZ = (Z

0

;

e

Z

1

; : : : ;

e

Z

n

; r) is
a continuous Grigelionis process as well. We will now compute its extended characteris-
tics (?; "

(1;

e

Z

1

0

;:::;

e

Z

n

0

;r

0

)

;

b

b;bc; 0; 0)

E by application of Itô's formula tof
i;j

and the Grigelionis
process(S0

t

; r

t

; A

i

(t); B

i

(t); A

j

(t); B

j

(t))

t2[0;T ]

for anyi; j 2 f1; : : : ; ng. This yields

b
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e
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(�B
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1

2

�

2

(B

i

(t))

2

�

=

e

Z

i

t

�(

e

#(t)� #)B

i

(t) for anyt < t

i
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ij

t

=

e

Z

i

t

e

Z

j

t

B

i

(t)B

j

(t)�

2 for t < t

i

^ t
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(4.17)

Since theeZi are constant aftert
i

, we havebbi
t

= 0 for t � t

i

andbcij
t

= 0 for t � t

i

^ t

j

.
For the diffusion coefficients related to the last componentr in (Z

0

;

e

Z

1

; : : : ;

e

Z

n

; r), which
is indexed byn + 1, we obtain

bc

i;n+1

t

= �

e

Z

i

t

B

i

(t)�

2 for t < t

i

andbci;n+1

t

= 0 for t � t

i

. Let us once more remark thatf is, strictly speaking, not of class
C

2 onR6 and one may lead an exact proof by localization as in Corollary 4.7.
Second step:A straightforward calculation yields thatbbi

t

��

P

n

j=1

bc

ij

t

�

j

=

e

Z

j

t

= 0 for any

i 2 f1; : : : ; ng, t 2 R

+

. By the remark following Corollary 3.23,(0; �1= eZ1

; : : : ; �

n

=

e

Z

n

)

is au
�

-optimal strategy forA in the marketeZ = (Z

0

;

e

Z

1

; : : : ;

e

Z

n

). Therefore,eZ1

; : : : ;

e

Z

n

are (�; �1= eZ1

; : : : ; �

n

=

e

Z

n

)-consistent proce processes in the sense of Definition 3.40 and
Remark 3 in Section 3.6.

Third step: Note that# andB are bounded deterministic functions. In view of the
shape ofbb;bc in the first step, integrability condition (RC 1) follows if we can showsup

t2[0;T ]
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E((

e

Z

i

t

)

4

) <1 for anyi 2 f1; : : : ; ng. Observe that

e

S

i

t

= S

i

t

� exp

�

�

Z

t

i

t

(1� e
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�s)

)(

e

#(s)� #) ds

�

for anyt 2 [0; t

i

), whereSi is defined as in Lemma 4.23. Therefore,j

e

Z

i

j � jZ

i

jK for some
K 2 R

+

, namelyK := exp(

R

t

i

0

(1 � e

��(t

i

�s)

)j

e

#(s) � #j ds), whereZi is the discounted
neutral price processZi

= S

i

=S

0. The claimsup

t2[0;T ]

E((

e

Z

i

t

)

4

) < 1 now follows from
the estimate in the second step in the proof of Lemma 4.23.

Fourth step: As noted in the remark before Subsection 4.9.1, the martingale problem
(?; "

r

0

; b; c; 0; 0)

M in R with b(�!)

t

= �(# � �!

t�

), c(�!
t

) = � for any (�!; t) 2 D

1

� R

+

has a unique solution-measure, namely the distributionP

r of r. Suppose for the moment
that(
;F) equals the Skorohod space(D 1

;D

1

) andr is the canonical process onD 1 . Since
e

# � # is a bounded function, it follows from Theorem 2.31 thatE (

R

�

0

�

�

2

(

e

#(s)� #) dr

c

s

) is

the density process of a probability measure. This impliesE(E (

R

�

0

�

�

2

(

e

#(s)� #) dr

c

s

)

1

) =

E(E (

R

�

0

�

�

2

(

e

#(s) � #) dr

c

s

)

T

) = 1, whereT = supft

1

; : : : ; t

n

g. (Since this expectation
depends only on the distribution ofr, it follows that the equality also holds if the underlying
space is not(D 1

;D

1

), as long asr is a solution-process to the above martingale problem.)
This shows thatP � is a well-defined probability measure equivalent toP .

Fifth step: An application of Girsanov's theorem (cf. Theorem 2.26 and Lemma 2.27)
yields that the extended characteristics(?; "

(

e

Z

1

0

;:::;

e

Z

n

0

;r

0

)

;

�

b; �c; 0; 0)

E of ( eZ1

; : : : ;

e

Z

n

; r) rela-

tive toP � satisfy the following equations:�bi = 0 for i = 1; : : : ; n, �bn+1

t

= �(

e

#(t)� r

t

) for
anyt 2 R

+

. In particular,eZ1

; : : : ;

e

Z

n areP �-local martingales and Statement 1c in Lemma
4.24 holds.

Sixth step:Note thatrc is a multiple of Brownian motion. Sincee# is a deterministic
(and piecewise continuous) function, it follows thatL is a lognormally distributed random
variable (cf. Proposition 4.21) and henceE(L2

) <1. In view of the third step, this implies
sup

t2[0;T ]

E

�

((

e

Z

i

t

)

2

) = sup

t2[0;T ]

E((

e

Z

i

t

)

2

L) � sup

t2[0;T ]

(E((

e

Z

i

t

)

4

)E(L

2

))

1=2

< 1. By

Equation (4.17) and the boundedness ofB

i

; B

j, we obtainE�

(h

e

Z

i

;

e

Z

i

i

T

) < 1 for i =

1; : : : ; n, and henceeZi is a square-integrableP �-martingale (cf. JS, I.4.50c).
Seventh step:Application of Itô's formula similarly as in the second step of the proof

of Lemma 4.23, but to the process(Zi

; t) instead of(Zi

; Z

j

), yields thatdhZi;c

; r

c

i

t

=

�Z

i

t

�

2

�

(1� e

��(t

i

�t)

) dt = �Z

i

t

�

2

B

i

(t) dt for i = 1; : : : ; n andt � t

i

. Since the local mar-
tingaleZi;c has the representation property relative tor (cf. Theorem 2.65), it follows that
dZ

i;c

t

= H

i

t

dr

c

t

for someH i

2 L

2

loc

(r

c

). Obviously, we havedhZi;c

; r

c

i

t

= H

i

t

dhr

c

; r

c

i

t

=

H

i

t

�

2

dt and thereforeH i

t

= �Z

i

t

B

i

(t) for �-almost allt 2 R

+

. This implies that, for
given (�; �=Z

1

; : : : ; �=Z

n

), the local martingaleeN in step 5 on page 123 is of the form
e

N

t

= ��

R

t

0

P

n

i=1

�

i

=Z

i

t

dZ

i;c

t

= �

R

t

0

P

n

i=1

�

i

B

i

(s) dr

c

s

=

�

�

2

R

t

0

(

e

#(s) � #) dr

c

s

. Therefore,
e

P in step 6 on page 123 equalsP �. Statement 1d now follows from Statement 1c.
2. Since the proof is similar to the Vasicek case, we only sketch the single steps.
First step:Firstly note thate� is bounded. Therefore, there exists somem;M 2 R

+

with
e

�(t)x +

1

2

�

2

x

2

� 1 > 0 for anyx 2 [M;1), t 2 [0; T ], ande�(t)x +

1

2

�

2

x

2

� 1 < 0 for
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anyx 2 [0; m), t 2 [0; T ]. Since the coefficients of the integral equation (4.16) are locally
Lipschitz, it follows that the initial value problem forBi has a unique solution staying in
[0;M ] for t 2 [0; T ]. Sincer is also non-negative in the Cox-Ingersoll-Ross model, it
follows that0 �

e

S

i

� 1 for any i 2 f1; : : : ; ng. As in the first part of the proof, we
conclude thateZ = (Z

0

;

e

Z

1

; : : : ;

e

Z

n

; r) is a continuous Grigelionis process with extended
characteristics(?; "

(1;

e

Z

1

0

;:::;

e

Z

n

0

;r

0

)

;

b

b;bc; 0; 0)

E given by

b

b

i

t

=

e

Z

i

t

�

�

1

S

0

t

S

0

t

r

t

� B

i

(t)(�� �r

t

) + �B

i

(t)

+ r

t

�

�

e

�(t)B

i

(t)�

1

2

�

2

(B

i

(t))

2

+ 1 +

1

2

�

2

(B

i

(t))

2

��

=

e

Z

i

t

(� �

e

�(t))B

i

(t)r

t

for anyt < t

i

bc

ij

t

=

e

Z

i

t

e

Z

j

t

B

i

(t)B

j

(t)�

2

r

t

for t < t

i

^ t

j

;

moreoverbbi
t

= 0 for t � t

i

andbcij
t

= 0 for t � t

i

^ t

j

. For the coefficients related to the
last componentr in (Z

0

;

e

Z

1

; : : : ;

e

Z

n

; r), we obtainbci;n+1

t

= �

e

Z

i

t

B

i

(t)�

2

r

t

for t � t

i

and
bc

i;n+1

t

= 0 for t � t

i

.
Second step:As in the fourth step of the first part of the proof, one shows thatP

� is a
well-defined probability measure equivalent toP .

Third step:As in the fifth step of the first part of the proof, one shows thate

Z

1

; : : : ;

e

Z

n are
P

�-local martingales and�bn+1

t

= � �

e

�(t)r

t

is theP �-drift coefficient ofr for anyt 2 R

+

.
Since0 � S

i

� 1 andS0

� 1, it follows that eZi

=

e

S

i

=S

0 also assumes only values in[0; 1].
This implies thateZ1

; : : : ;

e

Z

n are boundedP �-martingales.
Fourth step: In view of the shape ofbb;bc in the first step, regularity condition (RC 1)

follows if we can showsup
t2R

+

E(r

2

t

) < 1. This is shown in the second step of the proof
of Lemma 4.23 for the Cox-Ingersoll-Ross model.

Fifth step: As in the seventh step of the first part of the proof, one shows thatP

�

equals the measureeP in step 6 on page 123. SinceeZ1

; : : : ;

e

Z

n areP �-martingales, they
are(�; �=Z1

; : : : ; �=Z

n

)-approximate price processes. �



Appendix A

Notions from Stochastic Calculus

Conditional Expectation

As in JS, we define conditional expectations for any real-values random variable, even if it
is not integrable or non-negative, by

E(XjG) :=

�

E(X

+

jG)� E(X

�

jG) on the set whereE(jXjjG) <1

+1 elsewhere,

whereX+

:= X _ 0,X�

:= �(X ^ 0).

Locally bounded predictable processes

Locally bounded predictable processes are often taken as a natural class of integrands for
stochastic integrals (cf. JS, Section I.4). According to Dellacherie (1980), p.132, Lenglart
has shown that for predictable processes pathwise boundedness on any compact interval
suffices to ensure local boundedness. Since we could not find any reference, we provethis
result below.

Lemma A.1 LetH be a predictable process such thatH
0

is bounded. ThenH is locally
bounded if and only ifsup

s2[0;t]

jH

s

j <1 P -almost surely for anyt 2 R

+

.

PROOF. By Jacod (1979), (1.1) we may assume w.l.o.g. that the stochastic basis is complete.
The “only if”-part is obvious.

Assume thatsup
s2[0;t]

jH

s

j < 1 P -almost surely for anyt 2 R

+

. Define an increasing
sequence(T

n

)

n2N

of stopping times byT
n

:= infft 2 R

+

: jH

t

j � ng. Fix n 2 N

for the moment. SinceHT

n is predictable, the random setA
n

:= f(!; t) 2 
 � R

+

:

jH

T

n

t

(!)j 2 [n;1)g is predictable as well. For the stopping timeS
n

defined byS
n

(!) :=

infft : (!; t) 2 A

n

g, we have[S
n

] � A

n

. By JS, I.2.13 this implies thatS
n

is predictable.
Hence, there exists an announcing sequence(S

n;k

)

k2N

for S
n

. For anyn 2 N , we define
R

n

:= T

n

^ supfS

1;n

; : : : ; S

n;n

g. Then(R
n

)

n2N

is an increasing sequence of stopping times
with R

n

" 1 P -almost surely forn ! 1 andsup
t2R

+

jH

R

n

t

j � jH

0

j + n. Hence,H is
locally bounded. �
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Random Measures and Stochastic Integrals

Definition A.2 1. A random measureonR
+

�R

d is a family� = (�(!; dt; dx) : ! 2 
)

of non-negative measures on(R
+

� R

d

;B

+


B

d

) satisfying�(!; f0g� R

d

) = 0 for
any! 2 
 (cf. JS, Definition II.1.3).

2. For any(P
Bd

)-measurable (i.e.predictable) mappingW : 
� R

+

� R

d

! R the
integral processW � � is defined pathwise by

W � �

t

(!)

:=

(

R

[0;t]�R

d

W (!; s; x)�(!; ds; dx) if
R

[0;t]�R

d

jW (!; s; x)j�(!; ds; dx) <1

+1 else

(cf. JS, II.1.5).

3. � is calledpredictableif W � � is predictable for any predictable mappingW : 
 �

R

+

� R

d

! R (cf. JS, II.1.6).

Definition A.3 1. For anyRd -valued càdlàg, adapted processX, the random measure
of jumps�X is defined by

�

X

(!; dt; dx) =

X

s

1

R

d

nf0g

(�X

s

(!))"

(s;�X

s

(!))

(dt; dx)

(cf. JS, II.1.16).

2. A predictable random measure� (which turns out to be uniquely defined up to aP -
null set) is calledcompensatorof �X if E(W ��

1

) = E(W ��

X

1

) for any predictable
mappingW : 
� R

+

� R

d

! R (cf. JS, II.1.8).

Remarks.

1. Even if jW j � �

X

t

= 1 andjW j � �

t

= 1 so that the differenceW � �

X

t

�W � �

t

does not make sense, it is still possible to define a stochastic integralW � (�

X

� �)

for a large class of(P 
 Bd

)-measurable mappingsW , namely forW 2 G

loc

(�

X

).
For details, we refer to JS, Definition II.1.27.

2. We use a different notation than JS for integrals:

(a) By
R

t

0

H

s

dX

s

, we refer to the Stieltjes or stochastic integral of the real-valued
processH with respect to the real-valued processX. The stochastic integral is
denoted(H�X)

t

is JS.

(b) H can also beRd -valued. Then, the integral is alsoRd -valued with components
R

t

0

H

i

s

dX

s

for i 2 f1; : : : ; dg.
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(c) If H is a Rd -valued, predictable process andX a Rd -valued semimartingale,
we use the notation

R

t

0

H

s

� dX

s

to denote
P

d

i=1

R

t

0

H

i

s

dX

i

s

. If X a Rd -valued
continuous local martingale, then

R

t

0

H

s

�dX

s

can be defined for a larger class of
integrands, namelyL2

loc

(X) (cf. JS, III.4.5, where the notation(H�X)

t

is used).

(d) We often denote stochastic integrals with respect to random measures by
R

[0;t]�E

W (s; x)�(ds; dx) and
R

[0;t]�E

W (s; x) (� � �)(ds; dx). The notation in JS is

W � �

t

andW � (� � �)

t

, respectively. IfW is Rd -valued, then the integrals
should be read componentwise.

Discrete-Time Models

Any discrete-time model can be naturally embedded in a continuous-time framework in the
following manner. Let(
;F; (F

n

)

n2N

; P ) be a discrete stochastic basis and(X

n

)

n2N

an
adapted process on that space. DefineF

t

:= F

[t]

andX
t

:= X

[t]

for any t 2 R

+

. Then
(
;F; (F

t

)

t2R

+

; P ) is a continuous stochastic basis and(X

t

)

t2R

+

a càdlàg, adapted process
on that space. Conversely, we make the following

Definition A.4 We call a filtration(F
t

)

t2R

+

discreteif F
t

:= F

[t]

for anyt 2 R

+

. Likewise,
we say that a càdlàg process(X

t

)

t2R

+

is discreteif X
t

:= X

[t]

P -almost surely for any
t 2 R

+

.

For details cf. JS, Subsection I.1.f.

Absolute Continuity of Measures

Definition A.5 1. Let (
;F; (F
t

)

t2R

+

; P ) be a filtered probability space andP 0 another
probability measure on(
;F). We say thatP 0 is locally absolutely continuouswith

respect toP , and we writeP 0

loc

� P , if P 0

j

F

t

� P j

F

t

for anyt 2 R

+

(cf. JS, III.3.2).
The up to indistinguishability uniqueP -martingaleZ with Z

t

= dP

0

j

F

t

=dP j

F

t

is
called thedensity processof P 0 relative toP (cf. JS, III.3.4).

2. We say thatP; P 0 arelocally equivalent(P 0

loc

� P ) if P 0

loc

� P andP
loc

� P

0.

Canonical Filtration

Definition A.6 If X is a càdlàg process, we call(G

t

)

t2R

+

, defined byG
t

= \

s>t

�(X

u

: u 2

[0; s]) for anyt 2 R

+

, thecanonical filtrationof X or the filtrationgeneratedbyX.

Skorohod Space

Definition A.7 1. By D d

:= D (R

d

), we denote the space of all càdlàg functionsR

+

!

R

d (calledSkorohod space, cf. JS, VI.1.1).
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2. The mappingX : D (R

d

) � R

+

! R, (�!; t) 7! �!

t

is calledcanonical processon
D (R

d

).

3. The filtration generated by the canonical processX is denoted(Dd

t

)

t2R

+

:= (D(

R

d

)

t

)

t2R

+

. Moreover, we setDd

:= D(R

d

) := D

1�

(R

d

) (cf. JS, VI.1.1).

4. We denote the predictable�-field onD d

� R

+

byPd.

The spaceS1

Definition A.8 Let (
;F; (F
t

)

t2R

+

; P ) be a filtered probability space andd 2 N

� . For any
R

d -valued, càdlàg (here including a limit at infinity), adapted processX, we define

kXk

S

1

:= E(kXk

�

1

):

Moreover, we setS1

:= fX R

d -valued, càdlàg, adapted process: kXk

S

1

� 1g: By Del-
lacherie & Meyer (1982), VII.64,S1 is a Banach space.

Martingale Representation Property

Definition A.9 A local martingaleM has therepresentation propertyrelative to aRd -valued
semimartingaleX if it is of the form

M =M

0

+

Z

�

0

H

s

� dX

c

s

+

Z

[0;�]�R

d

W (s; x) (�

X

� �)(ds; dx)

for someH 2 L

2

loc

(X

c

) andW 2 G

loc

(�

X

), where�X denotes the measure of jumps ofX

and� its compensator.
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General Notation

N ;N

�

f0; 1; 2; 3; : : :g, f1; 2; 3; : : :g
R;R

+

;R

�

+

;R

+

;R

�

(�1;1); [0;1); (0;1); [0;1]; (�1; 0]

R

d the Euclideand-dimensional space
R

d�d the set of reald� d-matrices
Q ;Q

+ the set of rational numbers,Q \ R
+

:

[

i2I

A

i

the disjoint union of the setsA
i

A� b; bA fa� b : a 2 Ag; fba : a 2 Ag

L (E; F ) the space of linear, continuous mappingsE ! F

x � y the scalar product ofx; y 2 R

d

A

> the transposed of the matrixA
x ^ y; x _ y inf(x; y); sup(x; y)

x

i theith component ofx 2 R

d or theith power ofx 2 R

[x] the integer part ofx 2 R

+

jxj the Euclidean norm ofx 2 R

d

jAj the number of elements of the (countable) setA

kAk the operator norm of the matrixA
x

n

" x; x

n

# x (x

n

)

n2N

increases (resp. decreases) andlim

n!1

x

n

= x

lim sup limit superior of a sequence of numbers or sets
ess sup P -essential superior limit
min f the minimum of a functionf
o(: : :); O(: : :) Landau order symbols
f

�1

(A) the inverse image ofA
f j

A

the restriction of the mappingf to the setA
f

0 the derivative of a real functionf
@A the boundary of a setA (but compare p.106)
Df the derivative of a differentiable mappingf
D

i

f;D

(i;j)

f partial derivatives off
1

A

the indicator function of the setA
A

C the complement of the setA

 product of�-fields and measures
� convolution of probability measures (but compare Definition A.2)
P(A) the power set ofA
B;B

+

;B

d

;B(A) Borel-�-fields onR;R
+

;R

d

; A

212
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�(E); �(X

s

: s 2 A) the�-field generated byE or byfX
s

: s 2 Ag

F

t�

,F
1�

�([

s2[0;t)

F

s

); �([

s2R

+

F

s

)

F

P theP -completion of the�-fieldF
F

P

t

the�-field generated byF
t

and theP -null sets ofFP

P the predictable�-field
"

x

the Dirac measure sitting in the pointx
�; �j

[0;1]

; �j

R

+

the Lebesgue measure onR and its restriction to[0; 1] resp.R
+

N(�; �

2

) the normal distribution with mean� and variance�2

S

�

(�; �; �) the stable distribution with parameters�; �; �; �
P

X the distribution of the random variableX
P

XjG the regular conditional distribution ofX given the�-field G
P � P

0

P is absolutly continuous with respect toP 0.
P � P

0 The probability measuresP; P 0 are equivalent.
dP

0

dP

the Radon-Nikodým density ofP 0 relative toP
E(X);Var(X) expected value and variance ofX
Va(X)

t

the total variation of the processX on [0; t]

kXk

L

p

(E(jXj

p

))

1

p

kXk

�

t

supfjX

s

j : s � tg

S

p

fx 2 R

p+1

: jxj = 1g (but compare Definition A.8)
X

t

(!) X(!; t)

X

t�

lim

s!t;s<t

X

s

�X

t

X

t

�X

t�

[S; T ]; ]S; T ], etc. stochastic intervals
[T ] the graph of a stopping time, i.e.[T; T ]
X

T the processX stopped at timeT , i.e.XT

t

= X

T^t

X

T� the processX stopped strictly beforeT , i.e.XT�

t

= 1

[0;T )

(t)X

t

+

1

[0;T )

C
(t)X

T�

hM;Ni the predictable quadratic covariation of the local martingales
M;N

X

c the continuous local martingale part of the semimartingaleX

M

d

M �M

c for a local martingaleM
E (X) the stochastic exponential of the semimartingaleX

V ;V

d

;V

d�d càdlàg, adapted processes inR;Rd ;Rd�d , starting in 0, whose
components are of finite variation

A

+

loc

càdlàg, adapted processes, starting in 0, that are locally integrable
and increasing

A

loc

càdlàg, adapted processes, starting in 0, that are of locally inte-
grable variation



Index of Symbols

(F

t

)

t2R

+

, 35
(
;F; (F

t

)

t2R

+

; P ), 35
(b; c; F )

L, 36
(B;C; �)

I , 38
(B(h); C; �)

JS, 39
(b; c; F )

D, 43
(�; P

X

0

; b; c; F;K)

E, 46
(�; �; b; c; F;K)

M , 57
S

II

(H;XjP

H

;B;C; �), 59
s (H; XjP

H

;B;C; �), 59
(�; �; a; u; w;Q)

SDE, 72
(D (R

d

);D(R

d

); (D(R

d

)

t

)

t2R

+

), 206
(D

d

;D

d

; (D

d

t

)

t2R

+

), 56, 206
P

d, 57, 207
k �! k

�

t

, 66
D

d

t

, 67
4, 76
A, 91
S, 91
M, 91
U('; t; t

0

), 94
�

t

, 94


t

, 94
e

U('; t; t

0

), 96
rf , 106
@f , 106
X

�, 133
�t

�+, 133
F

�, 133
�

�, 133
k � k, 133
t

�++, 133
t

�+, 133
t

���, 133

t

��, 133
E(X j G), 204
�

X , 205
G

loc

(�), 205
W � (�� �), 205
W � �, 205
R

t

0

H

s

dX

s

, 205
R

t

0

H

s

� dX

s

, 206
R

[0;t]�E

W (s; x) (�� �)(ds; dx), 206
R

[0;t]�E

W (s; x)�(ds; dx), 206
L

2

loc

(X), 206

P

0

loc

� P , 206
P

0

loc

� P , 206
S

1, 207
k X k

S

1, 207

214



Index of Terminology

absolutely continuous, 35
American options, 31, 127
approximate

-ly consistent, 29, 126
price processes, 27, 30, 124
price region, 28, 124

approximating sequence, 97
arbitrage, 12, 18, 92
ARCH, 168
ARMA, 58, 70

bandwidth, 18, 111
bivariate diffusion, 180
Black-Scholes, 154
Blackwell space, 61

canonical filtration, 206
canonical process, 207
characteristic triplet, 37
characteristics, 13, 43

differential, 43
extended, 46
integral, 38
local, 43

compensation, 37
compensator, 205
complete models, 22, 24
conditional expectation, 204
conditional expected utility, 96
consistent, 24, 28, 29, 122, 126
continuous paths, 151
convexly restricted, 91
Cox-Ingersoll-Ross model, 192

daily return, 164
density process, 206

derivative, 11, 19, 43, 112
deterministic, 37
diffusion, 58, 70
discounted, 14
discounted price process, 90
discrete, 206

�-, 47, 91
discretized market, 133
duplicating strategy, 156
dynamic, 57

EMM, 22, 92
equilibrium, 15, 22
equivalent martingale measure, 22, 92
Esscher transform, 175
existence and uniqueness, 65
expected utility, 96
exponential Lévy processes, 171
extended Grigelionis process, 45
external supply, 24, 122

stochastic, 30, 126

feasible, 91
filtered probability space, 35
fixed constraints, 92
forward rates, 198
frictionless, 14

gain process, 92
gains, financial, 15
generated, 206
Girsanov's theorem, 54
Grigelionis process, 42

extended, 45

hedger, 15, 91
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216 Index of Terminology

Hull-White model, 195
hyperbolic model, 174

image réciproque, 59
improved derivative models, 28, 126
integrable, 36
integral process, 205
interest rate models, 192
inverting the yield curve, 29, 197
Itô process, 44
Itô's formula, 51

JS, 35

Keller's model, 190

Lévy process, 36
Lévy-Khintchine formula, 36
local utility, 94
locally absolutely continuous, 206
locally equivalent, 206
locally infinitely divisble process, 42
log-return, 160
lognormal returns, 160

market, 90
Markov chain, 58, 70
martingale problem, 57
martingale representation, 88, 207
mesh-size, 133
minimal martingale measure, 152
moments of a Lévy process, 41
multivariate point process, 70

neutral price process, 112, 127
next reasonable exercise time, 128
Novikov-type condition, 114
numeraire, 14, 32, 90

ODE, 35, 58, 70
optimal, 17, 96
ordinary convex program, 106
ordinary differential equation, 35, 58, 70

(P), 106

perfect hedge, 156
PIIS, 36
portfolio, 15, 91
price region, 23, 25, 28, 122, 124
process with stationary, independent incre-

ments, 36
pure hedge, 151

random measure, 205
random measure of jumps, 205
(RC 1' ), 95
(RC 1), 95
(RC 2), 98
regular, 97
regularity condition, 95, 98
representation property, 88, 207
representative risk aversion, 23
representative speculator, 23
risk aversion, 16, 93

representative, 23

SDE, 72
Skorohod space, 206
Snell envelope, 32, 130
solution-measure, 60, 73
solution-process, 72, 73
speculator, 15, 91
stable returns, 163
standard utility function, 16, 94
stochastic basis, 35
stochastic differential equation, 72
stochastic integral, 205
strategy, 91
superhedge, 115
supply, 24, 30, 122, 126
supply bound, 25, 122

time value, 162
trading corridor, 18, 111
trading strategy, 15, 91
transaction costs, 18
truncation function, 36
two-period model, 140
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underlying, 11, 19, 112
utility, 15

function, 16
standard, 16, 94

bandwidth, 18, 111
expected, 94, 96
function, 93
local, 94

Vasicek model, 192

weak solution, 60

zero-coupon bonds, 194


