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Abstract
The Sato process model for option prices is expanded to accomodate credit

considerations by incorporating a single jump to default occuring at an inde-
pendent random time with a Weibull distribution. Explicit formulas, in this
context, for the bid and ask prices of two price economies that price residual
risks to levels of risk acceptability are then derived. Liquidity considerations
are thereby captured by the movements in the two prices that indirectly re�ect
changes occuring in the underlying set of zero cost risky cash �ows acceptable
to the market. In such two price economies it has been proposed that capital
requirements supporting a trade are to be set at the di¤erence between the ask
and bid prices of the two price economy. We proceed to evaluate the varia-
tions in the level of such required capital over time. In particular we observe
that the Lehman bankruptcy was primarily a liquidity event for the remaining
banks from the perspective of changes in the levels of such a required capital.
Additionally, we observe that variations in such capital requirements over time
are primarily explained by movements in the option surface and the levels of
liquidity, with credit variations playing a part occasionally. The estimations

�Dilip Madan acknowledges support from the Humboldt foundation as a Research Award
Winner.
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conducted in the paper are novel to the literature on option pricing as we esti-
mate for the �rst time a closed form model for the two price data of bid and ask
option prices whereas most of the literature heretofore has estimated a single
risk neutral price on data for midquotes. There are therefore no comparative
benchmarks in the literature for the modeling conducted here.
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1 Introduction

Risk in the market for derivatives has a number of dimensions of interest to those
seeking to regulate these markets. In general apart from price movements of the
underlying assets, we have the risk of movements in the corresponding option
surfaces. These movements capture changes in asset volatility, the volatility of
volatility, the skewness of the risk neutral distribution and the term structure
of at-the-money volatility. Their relevance arises from the use of options as
hedging instruments supporting the pricing and risk management of the more
complex structured investments. Additionally there are the risks of changes
to market liquidity along with variations in the credit standing of the under-
lying entity also embedded in the prices of derivatives. The market for credit
default swaps provides the hedge for credit while liquidity changes are seen in
the secondary market for derivatives directly. From a regulatory standpoint it is
critical that capital requirements be set in a risk sensitive manner with a view to
counteracting adverse risk incentives inherited by limited liability contracts em-
bedded in the derivatives world of potentially unbounded liabilities, as argued
for example in Madan (2009), and Eberlein and Madan (2010). It is there-
fore imperative that we understand how all these varied risk dimensions impact
derivative capital requirements and how in particular they behaved during the
crisis, presumably peaking at the date of the Lehman bankruptcy.
Such an evaluation requires an implementable theory of risk sensitive cap-

ital requirements that one may apply to a set of stylised trade positions. The
most widely used measure of risk in setting capital requiriments is the value
at risk (VAR). The relationship of required capital to VAR is imprecise and
lacks a theoretical foundation. The VAR measure itself has been criticized as
a basis for capital requirements in Artzner, Delbaen Eber and Heath (1999)
where re�nements or corrections were proposed. A number of operational re-
�nements were then developed in Cherny and Madan (2009) that was followed
by the development of the theory of two price economies in Cherny and Madan
(2010). The theory of two price economies was then applied to the problem of
capital prescriptions by Carr, Madan and Vicente Alvarez (2011) and it is this
methodology that we implement and evaluate here. However, we regard this
development as essentially a re�nement of VAR.
The two prices of a two price economy are termed bid and ask prices but they

are not to be confused with the bid and ask prices of relatively liquid markets,
like the market for stocks where presumably the law of one price prevails and bid
ask spreads re�ect the costs of inventory management and/or the asymmetric
information costs of market makers. With regard to bid ask spreads in liquid
markets we cite Copeland and Galai (1983), Easley and O�Hara (1987), Glosten
and Milgrom (1985). Ahimud and Mendelson (1980), Demsetz (1968), Ho and
Stoll (1981, 1983) and Stoll (1978) focus particularly on the order processing
and inventory costs of liquidity providers. There have also been numerous sta-
tistical studies on the bid ask spread (Roll (1984), Choi, Salandro and Shastri
(1988), George, Kaul, and Nimalendran (1991), and Stoll (1989)). In particular
Huang and Stoll (1997) consider decomposing the spread into order processing,
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inventory and adverse selection components. These are not the spreads that are
modeled in the two price markets of conic �nance where the law of one price
fails but are instead the spreads associated with the provision of liquidity in
highly liquid one price markets.
Yet another approach to spreads in the literature is the introduction of trans-

action costs (Constantinides (1986), Jouini and Kallal (1995), Lo, Mamaysky
and Wang (2004)). The spread now re�ects the commission charges of trading
and may be related to various empirical aspects of the asset in question includ-
ing the order �ow and the trading volume. These studies also address the costs
of trading in relatively liquid markets.
On the other hand there is a large segment of �nancial markets that creates

�nancial products using the relatively liquid markets for hedging. These are
the markets for structured investments or over the counter structured products.
Most transacting is infrequent and one generally buys from a provider at the
ask price. In case an unwind becomes necessary one sells back to the provider at
a substantially reduced bid price. The spreads here are not related to inventory
considerations as both parties generally hold the positions out to an explicitly
stated contract maturity. In the two price markets of conic �nance the focus
of attention is not on a spread around a single risk neutral price at which one
may in principle trade in both directions, but shifts to modeling directly the two
separate prices at which transactions occur. Carr, Madan and Vicente Alvarez
(2011) show that the midquote in such two price markets will generally not
equal the risk neutral value. Madan and Schoutens (2011) further show that
were midquotes taken as candidates for the risk neutral value then there would
be static arbitrage opportunities all over the place.
In the equilibrium of two price economies the bid price is now seen as a

minimal conservative valuation such that the expected outcome will safely ex-
ceed this price under numerous alternative valuation possibilities. Similarly an
ask price is a maximal valuation ensuring that the expected payout will fall
below the price under a similar set of alternative valuation possibilities. The
spreads of conic �nance are then tied to the speci�cation of the set of valuation
possibilities being entertained. A positive expectation under all the valuation
possibilities de�nes the set of risks acceptable to the market, seen now as a
passive counterparty to all �nancial transactions. Agents are not modeled as
trading with each other but just with an abstract market that has no views,
preferences or endowments, but merely tests every proposed transaction for ac-
ceptability using its set of valuation possibilities. Conic �nance provides us with
a formal model of the abstract market that di¤ers from the classical market.
The latter is associated with the law of one price where all transactions with a
positive expectation under the single market pricing kernel are accepted. This
is a half space of acceptable risks that is replaced in conic �nance by a proper
cone containing the nonnegative cash �ows.
Given theoretically these two prices we follow Madan and Schoutens (2010),

and Carr, Madan and Vicente Alvarez (2010) and de�ne capital reserves for
derivative liabilities as the di¤erence between the ask and bid prices. Theoreti-
cally a liability could be unwound by buying it back from the market at the ask

4



price and holding reserves at this level would be quite safe. But it would also be
quite a substantial amount of capital that allows no use of funds on taking on
the liability because a capital reserve set at the ask exceeds any possible price.
Madan and Schoutens (2010) and Carr, Madan and Vicente Alvarez (2010) ar-
gue for releasing a conservative valuation like the bid price and holding just the
di¤erence as a reserve. Assuming that this bid price could be recovered one
could couple this with the reserve to cover the unwind at the required ask.
When trust disappears in the market potential transactions have to pass a

more stringent collection of tests to be approved. This situation is analytically
captured by expanding the set of valuation or test measures under which a
positive expectation is being demanded. As a consequence bid prices fall, ask
prices rise, and there is a resulting expansion of capital requirements limiting
economic activity. The two prices of conic �nance attempt to calibrate trust in
the market place by explicitly modeling the cone of acceptable risks.
Liquidity risk is then captured by movements in trust as re�ected by the

cone of risks acceptable to the market. The market is seen as reducing the
set of classically acceptable risks de�ned by a positive risk neutral expectation,
by requiring a positive expectation under additional valuation possibilities as
well. The existence of these additional valuation possibilities introduces the two
prices of conic �nance and liquidity issues. The original risk neutral measure
does all the pricing of classical risks using the linear pricing rule induced by the
risk neutral measure. Liquidity risk pricing is nonlinear as the two prices are
seen as in�ma and suprema of a set of valuations making the measure change
attaining the two prices dependent on the cash �ow being priced and hence the
nonlinearity.
For a candidate classical risk neutral measure for the option surface we

synthesize the risks by the four parameter model of the Sato process introduced
in Carr, Geman, Madan and Yor (2007), that is based on the variance gamma
(VG) law (Madan and Seneta (1990), Madan, Carr and Chang (1998)) at unit
time . The Sato process was shown in Carr, Geman, Madan and Yor (2007)
to be particularly e¤ective in synthesizing options across numerous strikes and
maturities at a point of time by four parameters. The model is a one dimensional
Markov model and in the absence of static arbitrage there must exist such a
model (Carr and Madan (2005), Davis and Hobson (2007)). Hence we employ
it as an adequate summary of the option surface at a point of time.
In addition to the risks of movement in the underlying price and the risk

neutral parameters describing the surface of option prices we wish to simulta-
neously synthesize movements in credit and liquidity risk. In this regard we
note that traditionally credit and liquidity have been empirically analysed by
looking for securities with the same credit exposure and di¤erent liquidities with
any remaining price di¤erences being then attributed to the liquidity di¤erences
(Ahimud and Mendelson (1991)) or by controlling for liquidity di¤erentials in
the estimation of credit exposures (Tibor, Jarrow and Yildrim (2002)). There
are few models parameterizing both aspects in the same model that then allows
the estimation to sort out the relative impacts. Furthermore liquidity and credit
issues have primarily been studied in the market for stocks and bonds. With
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regard to options Cetin, Jarrow, Protter (2004) and Cetin, Jarrow, Protter and
Warachka (2006) consider liquidity costs inherited by options markets when the
market for the underlying asset is not liquid. As a result liquidity costs are
incurred by the hedge. We also cite in this connection Cetin, Soner and Touzi
(2007). For the approach taken here the underlying asset remains liquid but as
we do not have the possibility of complete replication, bid and ask price spreads
re�ect charges for the need to hold residual risk. Additionally the formulation
presented here simultaneously addresses both credit and liquidity issues in the
market for derivatives with the focus on capital reserves in the place of pricing
or valuation.
As Cetin, Jarrow, Protter and Warachka (2006) write,
�Risk management is concerned with controlling three �nancial risks: mar-

ket risk, credit risk and liquidity risk. Starting with the Black Scholes-Merton
option pricing formula, both market and credit risk have been successfully mod-
eled with Du¢ e (1996) and Bielecki and Rutkowski (2002) o¤ering excellent
summaries of these literatures. In contrast, our understanding of liquidity risk
is still preliminary. �
We therefore seek to �rst extend the Sato process model to accomodate

credit risk. In this direction there is already a substantial literature and we cite
for example Davis and Lischka (2002), Andersen and Bu¤um (2003), Albanese
and Chen (2005), Linetsky (2006), Atlan and Leblanc (2005) and Carr and
Madan (2009) that allows in particular for linkages between comovements in
the underlying asset price and the probability of the credit event. In this paper
that is an initial foray into jointly modeling both credit and liquidity risk we
take a �rst order approach to credit risk by allowing for its mere existence
but ignoring issues of comovements that may now exist in principle in all the
three dimensions of market, credit and liquidity. Extensions addressing and
then modeling aspects of comovement are here left for future research. With
regard to both credit and liquidity we merely allow for existence. We therefore
employ a simple model for the credit event and use a Weibull distribution for
an independent time of default.
As already noted both the study of market and credit risk are substantially

advanced and we have much to borrow from, making some particular choices
suitable to the context. The study of liquidity risk is relatively preliminary but
it is fairly widely acknowledged that these risks are at play when spreads are
signi�cant enough to deter for example high frequency trading in the associated
assets. The bid and ask spreads in stocks and a variety of �xed income securities
that have many market participants employing high frequency trading strategies
may well be related to the various market maker considerations modeled in the
literature for such spread analysis, but as already noted these are the spreads of
the relatively liquid markets. Many �nancial contracts are traded outside such
markets where the two prices are just that, the prices for buying from or selling
to the market, and we then need a theory for such two price markets. Option
markets are probably in between these extremes with some liquidity but yet
with many shorter maturity out of the money positions being held to maturity.
We adopt the theory of two price markets proposed in Cherny and Madan
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(2010) and apply it here to the test case of option markets, treating it for the
purposes of this paper as a proper two price market, thereby ignoring the little
liquidity that it does have. Proper two price markets would include the whole
host of structured products that are now an established part of the �nancial
markets. However, the structured product markets lack access to published
price data. We are therefore employing option markets as a proxy for the
two price markets studied in Cherny and Madan (2010). In such two price
markets liquidity risk moves away from the law of one price and the associated
linear pricing rule, to a nonlinear pricing rule for liquidity risk. Liquidity risk
is therefore fundamentally di¤erent from market and credit risk as the latter
two fall within the classical domain of a linear pricing rule. This observation
may help explain the di¢ culties associated with modeling liquidity risk as an
analysis of liquidity may require a paradigm shift in the approach to pricing,
viz. a theory for two price markets.
Combining the three considerations of market, credit and liquidity risk we

obtain a model yielding closed forms for the bid and ask prices of two price
economies with four parameters that synthesize the option surface. Further-
more, the Weibull distribution provides two credit parameters in the expected
life or scale of time to default and the shape parameter yielding the sensitivity
of the hazard rate to the �rm�s age. Market and credit risk are modeled within
the classical purview of a linear pricing rule. Finally we introduce two parame-
ters capturing movements in the cone of acceptable risks that may be termed
the levels of risk aversion and the absence of gain enticement. These are the
liquidity parameters of the model yielding nonlinear pricing models for the bid
and ask prices of two price economies. In all there are eight parameters in the
full model.
We note in this regard that the model proposed here and its estimation is a

novel addition to the literature as we estimate parameters using separately both
the bid and ask prices of the option surface. The literature heretofore typically
estimates a single risk neutral measure using the midquote as a candidate for
the one price of a market satisfying the law of one price. Carr, Madan and
Vicente Alvarez (2011) and Madan and Schoutens (2011) have observed that
the midquote of our two price economy in fact deviates from the base risk
neutral valuation.
We then go on to employ the perspective of two price markets to study the

capital requirements proposed in Carr, Madan and Vicente Alvarez (2011). In
particular we describe how capital responds to volatility, the movements of the
option surface, credit considerations and the newer modeling of movements in
the cone of acceptable risks.
The eight parameters are estimated on data for bid and ask prices for op-

tions on four �nancial �rms with su¢ cient data in the selected period. The
estimation is conducted every three days for three years beginning October 23,
2007 and ending September 22, 2010. Capital requirements are then assessed
for a variety of options each day and we present an analysis of the contributions
of the various risk sources to variations in required capital reserves. In practice
capital would be set at some level of aggregation. For example a 50 million
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dollar issue of a structured investment on three underliers with a hedge in place
would be analysed for a capital requirement as a package deal. It could on occa-
sion be coupled with other structured investments with similar underliers with
capital being assessed on the whole portfolio of such issues. Such aggregation
permits one to take account of bene�cial netting as and when it occurs. Lack-
ing details on such aggregate packages and relying on the conjecture that the
qualititative structure of capital dependence on risk components is not a¤ected
by the packaging but just the absolute level of the capital involved, we analyse
capital requirements at the level of single options.
Furthermore one could seek a comparison of our capital requirements with

alternative procedures for comparative purposes. However, we note that the
capital requirements we analyse are but a theoretical re�nement of traditional
value at risk based methods in any case and thereby constitute a representative
of all such procedures. Our interest is in ascertaining the decomposition into
market, credit and liquidity risk components of such requirements and we expect
that this decomposition is not in�uenced by the particular form of value at risk
or its re�nement, that is employed.
The outline of the rest of the paper is as follows. Section 1 presents the

modi�cation of the stock price model which is driven by a Sato process to
accomodate an exposure to default. Section 2 brie�y describes the computation
of the bid and ask prices of two price economies for a cone of acceptable risks
de�ned via concave distortions. Section 3 presents some stylized facts about
how the various parameters impact capital requirements. Section 4 presents the
data and estimation results for three years on four �nancial �rms. In Section 5
we construct the time series of capital required for option positions in the four
banks in our study. Section 6 decomposes changes in required capital into the
various risk components around the Lehman bankruptcy. Section 7 presents
a time series for the total and relative contributions to capital activity of the
three broad sources of risk, the option surface, liquidity and credit. Section 8
concludes.

2 Accomodating default in derivative pricing

We begin with a brief review of a successful four parameter model that calibrates
well option prices across both strike and maturity. This is the Sato process model
�rst introduced by Carr, Geman, Madan and Yor (2007). It was developed as a
generalization of Lévy processes that were known to �t option prices well across
strikes but could not simultaneously also �t prices across maturity (Konikov
and Madan (2002)). The starting point for the construction of this model is a
self decomposable law for the risk neutral distribution of the logarithm of the
stock price at unit time that we take to be a year. One may associate with such
a law at unit time, both a Lévy process and a Sato process, but the latter �ts
the option surface while the former does not.
Self decomposable laws were studied by Lévy (1937) and Khintchine (1938)

and are de�ned by the property that a random variable X is self decomposable
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if for every real c; 0 < c < 1; there exists a random variable X(c) independent
of X such that

X
(d)
= cX +X(c);

where the equality is in distribution. Lévy (1937) and Khintchine (1938) showed
that the self decomposable laws are the class of limit laws. More exactly these
are the laws of limits of sequences of sums of independent random variables
appropriately scaled and centered. Hence they share the basic intuition of the
Gaussian model as representing the limit of a large number of independent
shocks.
The self decomposable laws form a proper subclass of the class of in�nitely

divisible laws with a special structure to their Lévy measures k(x)dx: In partic-
ular the function jxjk(x) must be decreasing for x > 0 and increasing for x < 0:
An example of such a law is given by the variance gamma (VG) process at unit
time and in this case jxjk(x) has the form exp (ax� bjxj) for jaj < b; and we
clearly have the required property.
Sato (1991, 1999) showed that one may associate with such a self decompos-

able law at unit time a process with independent but inhomogeneous increments
by de�ning the marginal laws of the process at time points t upon scaling the
law at unit time. Hence we have that

X(t)
(d)
= t
X; t > 0:

Sato constructed the precise representation for X(t) as an additive process.
Consider T such that for t < T; X(t) has a �nite time zero exponential

moment. Then de�ne !(t) by

exp(�!(t)) = E0 [exp (X(t))] :

Carr, Geman, Madan and Yor (2007) de�ned a positive stock price process S(t)
with rate of return equal to r � q for an interest rate r and a dividend yield q
by

S(t) = S(0) exp((r � q)t+X(t) + !(t)):
They showed that this simple normalized exponential of an additive process
calibrates option surfaces quite well. It is also known that the Lévy process
associated with the random variable X at unit time fails to �t the option surface
as it has a too fast paced reduction in skewness and excess kurtosis, when
compared to model free estimates of these quantities from market data (Konikov
and Madan (2002)).
For a speci�c model we take for X the variance gamma (VG) law at unit

time. The classical representation of the VG is as a scaled Brownian motion
W (t) with drift, time changed by a gamma process g(t; �) with unit mean rate
and variance rate �: This speci�cation for the VG yields the process,

X(t;�; �; �) = �g(t; �) + �W (g(t; �)):

The VG process has three parameters �; �; �: The parameter �; is the volatility of
the scaled Brownian motion, �; represents volatility of volatility or the variance
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rate of the gamma time change, and � the drift of the underlying Brownian
motion controls the skewness. The gamma process is an increasing pure jump
Lévy process with independent identically distributed increments over regular
nonoverlapping intervals of length h that are gamma distributed with density
fh(g) where

fh(g) =
g
h
��1e�

g
�

�
h
� �
�
h
�

� ; g > 0:
The Sato process constructed from the variance gamma (VG) law at unit

timeX(1) has an additional scaling parameter 
: In all we have a four parameter
model for the option surface. The parameter 
 helps to calibrate the term
structure of at the money volatility.
We now extend this model in a simple way to merely allow for the possibility

of default modeled by a single jump of the stock price to zero. We recognize that
numerous formulations in the literature, cited above, already model the hazard
rate for the single jump to default as a decreasing function of the stock price.
In the interest of jointly modeling credit and liquidity considerations for the
�rst time we take a simpler model for default. Here the logarithm of the stock
price process in the absence of default has an additive Sato speci�cation and
we take the hazard rate to be purely deterministic and consistent with a time
dependent survival probability given by a Weibull distribution. We employ the
Weibull distribution as it is a widely used distribution for life times and default
times (Lambrecht, Perraudin and Satchell (1997), Lee and Urrutia (1996)). It
allows for both increasing and decreasing hazard rates with respect to age. It
was used by Madan, Konikov and Marinescu (2006) to infer risk neutral default
time distributions embedded in the prices of credit default swap contracts.
We thereby write the defaultable stock price process as

eS(t) = eS(0) exp((r � q)t+X(t) + !(t))�(t)
p(t)

where the process �(t) starts at one and makes a single move by a jump down
to zero at an independent random time � : Note that as p(0) = 1 we haveeS(0) = S(0):The probability that �(t) is one is

p(t) = exp

�
�
�
t

c

�a�
where the parameter c controls the scale or average life and the shape parameter
a exceeds unity for hazard rates that increase with age, while a < 1 otherwise.
For a < 1 the function p(t) is convex while for a > 1 it starts out concave
but is eventually convex. The expected life is �(1 + 1

a )c
1
a : Even though actual

hazard rates under the statistical or real world probability may decrease with
age, their risk neutral counterparts we expect tend to be increasing re�ecting a
risk neutral conditional probability of surviving longer that falls with age (see
for example Madan, Konikov and Marinescu (2006)).

10



Let Ft(s) be the distribution function of the stock price conditional on no
default implied by the distribution of the Sato process at time t: Speci�cally

Ft(s) = P (S(t) � s) :

The distribution function of the defaultable stock price at time t then is

eFt(s) = P
�eS(t) � s� (1)

= P (Default by t) + P (No Default by t and S(t) � sp(t) ) (2)
= 1� p(t) + p(t)Ft(sp(t)): (3)

We shall see that the bid and ask prices for put and call options are determined
completely by the stock price distribution function and we employ equation (3)
in these expressions to determine bid and ask prices on call and put options on
a defaultable underlier.
We note that credit risk is typically analysed by modeling the probability

of default and recovery in default (Lando (2009)). For options the recovery is
clear as the call is worthless and the put receives the strike. Credit issues then
turn on the probability of default.
At this point we have a six parameter distribution function for the price

of a defaultable stock. These are the four option surface parameters �; �; �; 

coupled with the parameters of the Weibull survival function c; a: The pricing
is also classical at this point with the speci�cation of a single risk neutral law
for the underlying asset.

3 NonlinearModeling of Liquidity using the The-
ory of Two Price Markets

We employ here the principles of two price markets set out in Cherny and
Madan (2010). The market is modeled as a passive counterparty and all eco-
nomic agents may trade with the market, delivering to the market cash �ows
that are market acceptable. The market accepts at zero cost all nonnegative
cash �ows, and more generally it accepts a convex cone of cash �ows containing
the nonnegative cash �ows. The theory of two price markets di¤ers from the
classical one price theory only by reducing the set of cash �ows acceptable to
the market at zero cost from the half space of positive alpha trades to a proper
convex cone containing the nonnegative cash �ows. As already noted there are
other ways to model bid and ask prices that focus on the microeconomic con-
cerns of market makers providing the liquidity in highly liquid markets. The
theory of two price markets expounded in Cherny and Madan (2010) continues
to model the market as a classical passive counterparty with the only change
being a dependence of the terms of trade on the trade direction. The depen-
dence is however derived from an exogenous speci�cation for the structure of
risks that market participants may deposit in the market at zero cost. They
may deposit a cash �ow nonnegative to the market, but more generally deposit
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a convex cone containing such nonnegative cash �ows. We believe that an in-
vestigation of such a minimal departure from the classical model is worthy of an
independent investigation before one personalizes counterparties by bringing in
game theoretic considerations into the analysis. The focus on possible losses and
how conservative the resulting valuations are, depends on the size of the cone of
zero cost acceptable risks that constitutes an important primitive de�ning the
market.
Artzner, Delbaen, Eber and Heath (1999) show that all such cones are de-

�ned by a convex set of probability measuresM; equivalent to the base proba-
bility measure of a �xed probability space, with the property that a particular
random variable X de�ned on this space is acceptable if

EQ[X] � 0; for Q 2M:

Cherny and Madan (2010) use this structure of a cone of acceptable risks to
de�ne an abstract market as one that applies this condition to any zero cost
cash �ow to test it for market acceptability, in that the market will accept it at
zero cost or contract to receive it at no initial cost. The set of test measures
M describe all the valuation measures that must approve the acceptability of a
random variable. These measures were refered to as scenario measures in Carr,
Geman and Madan (2001). To ensure that the set of acceptable risks is smaller
than the classical one given by positive expectation under a single risk neutral
measure, the setM should contain a risk neutral measure.
For an operational de�nition of such cones Cherny and Madan (2010) con-

sider accepting all random variables X with a distribution F (x) = P (X � x);
provided Z 1

�1
xd	(F (x)) � 0;

for some �xed concave distribution function 	: The set of test measures or
scenario measures in this case consists of measure changes Z(u) on the unit
interval 0 � u � 1; with respect to the uniform density for U = F (X) such that
the antiderivative L; for L0 = Z; is bounded by the distortion, i.e. L � 	: We
denote this set of test measuresM(	):
Cherny and Madan (2010) then show that the bid price b(X) for a cash �ow

X with distribution function F is given by the acceptability of X � b(X) and

b(X) =

Z 1

�1
xd	(F (x)) (4)

= inf
Q2M(	)

EQ[X]: (5)

Similarly the ask price a(X) requires the acceptability of a(X)�X and

a(X) = �
Z 1

�1
xd	(1� F (�x)) (6)

= sup
Q2M(	)

EQ[X]: (7)

12



For the speci�c cash �ows associated with call and put options one obtains
on integration by parts speci�c formulas for the bid and ask prices. The bid
and ask prices for calls are denoted Cb(K; t); Ca(K; t) while for puts we write
Pb(K; t); Pa(K; t) for a strike K and a maturity t: We then have that

Cb(K; t) =

Z 1

K

(1�	( eFt(s)))ds
Ca(K; t) =

Z 1

K

	(1� eFt(s))ds
Pb(K; t) =

Z K

0

(1�	(1� eFt(s)))ds
Pa(K; t) =

Z K

0

	( eFt(s))ds
The speci�c distortion we employ is minmaxvar2 introduced in Madan and
Schoutens (2010) which is given by

	(u) = 1�
�
1� u 1

1+�

�1+�
; � > 0; � > 0:

Here � controls the rate at which the derivative of 	 goes to in�nity at zero and
represents the coe¢ cient of loss aversion in the market, while � controls the rate
at which the derivative of the distortion goes to zero at unity and represents
the degree of the absence of gain enticement. Expectation under a concave
distortion is also an expectation under a measure change where the measure
change is given by 	0(F (x)) and depends on the cash �ow being valued via the
distribution function. Higher values of � induce a greater upward reweighting
of losses as this raises 	0(u) for u near zero where we have losses and hence one
may associate higher values of � with more risk aversion. Higher values of �
on the other hand lower 	0(u) for u near unity where we have gains and this
reweights gains downwards and so may be associated with a higher absence of
gain enticement.
With these two parameters added on we have an eight parameter model for

bid and ask prices with the latter two prices being nonlinear as formally the
bid is the in�mum of valuations while the ask is a supremum of such valuations
as per equations (5) and (7). The measure change employed also depends on
the asset being valued via its dependence on the distribution function, as the
measure change is 	0(F (x)):
The parameters �; � are liquidity parameters for when they are increased the

set of acceptable risks is reduced, with bid prices falling and ask prices rising.
As a consequence any potential o¤er to sell at a price above the old market bid
must now either take a greater price impact for immediate sale or wait longer
for a price recovery. Similarly any potential o¤er to buy below the old market
ask has a greater price impact or waiting time. Liquidity risk is typically seen
in such price impact terms (Ericsson and Renault (2006)).
Capital requirements are set by the di¤erence between the ask and bid prices

as argued in Carr, Madan and Vicente Alvarez (2010) or Madan and Schoutens
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(2010). Basically for a liability to constitute an acceptable risk it must be
supported by the ask price viewed as the capital or cost of unwinding the position
at possibly unfavorable terms. However one gets credit for the bid price as a
possible conservative valuation for the position and only the excess need be held
in reserve. Note importantly, that the bid and ask prices here are not those
associated with the concerns of market makers providing liquidity to markets
that trade the associated asset with some high frequency, but rather these are the
two prices of a two price economy evaluating conservatively for the acquisition
and sale of infrequently traded risks. The di¤erence between the ask and bid
prices can also be seen as aggregating what could be lost as an asset with a
valuation down to the conservative bid plus what could be lost as a liability with
the need to unwind at an unfavorable ask price. The capital reserve is therefore
being set with a view towards measuring the possible loss in the contract.
Furthermore from the nonlinear structure of the associated pricing rules of

equations (5) and (7) respectively it is clear that a packaged risk has a higher
bid and a lower ask than the sum of its components. Hence such price computa-
tions should be and would be done at a suitable level of risk aggregation. Most
structured products are issued at some level of aggregation in both structure
and size of issue. We merely illustrate our computations at the level of data for
bid and ask prices of calls and puts. The principles and procedures would in
practice be applied at a suitable level of aggregation permitting some netting
implicit in the pricing equations. We expect, as already noted in the introduc-
tion, that portfolio level capital requirements would be reduced by netting but
their qualitative decomposition into contributions from market, credit and liq-
uidity risk would be re�ected by the analysis of individual products like options,
reported on here.
Some examples of capital requirements set by the spread of ask to bid prices

for two price economies help illustrate the procedures. Consider in this regard
capital requirements for equity and bond exposures in the classical context of
an underlying asset that follows a geometric Brownian motion model with a risk
neutral drift equal to the interest rate r and a volatility of �: The underlying
asset value for maturity T with an initial value of 100 is then

A(T ) = 100 exp(rT + �
p
TZ � �2T=2)

where Z is a standard normal variate. For a pure discount debt with face value
F and maturity T the value of debt at time t < T is

D(t) = e�r(T�t)Et[min(A(T ); F )]

while the value of equity is

J(t) = e�r(T�t)Et[(A(T )� F )+]

For T = 10; t = 5; � = :25 and a constant interest rate of r = 5% we
sample A(t) on 10; 000 paths for each of which we sample 10; 000 further paths
of A(T ) to obtain 10; 000 readings for Di(5); Ji(5) for i = 1; � � � ; 10; 000: We
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then determine bid and ask prices using distorted expectations for the distortion
minmaxvar at a relatively low stress level of 0:1 to get the following results for
the bid and ask prices on debt and equity. The bid and ask prices on debt are
respectively 35:75 and 38:65: The corresponding values for equity are 19:17 and
28:25: The capital charge for debt is 2:90 while for equity it is 9:08: The greater
riskiness of equity is re�ected in the Carr, Madan and Vicente Alvarez (2011)
capital charges of two price economies.
Given this formulation for risk sensitive capital reserves, the level of reserves

is then responsive to movements in the option surface parameters �; �; �; 
, the
credit parameters c; a; as well as the liquidity parameters �; �: We shall study
the relationship between these parameters and capital requirements �rst in a
stylized setting in the next section and then over a three year data period ending
September 22, 2010 for the four �nancial �rms Bank of America BAC; Goldman
Sachs GS; J.P.Morgan Chase JPM; and Wells Fargo WFC:

4 Capital sensitivity to parameters in a stylized
setting

We take as a base setting for the option surface parameters, the mean value of
the estimated parameters across time for the four banks, studied later in the
paper. For the liquidity and credit parameters we take a stylized value re�ecting
a symmetric cone with � = � = :1. The expected life parameter is set at 5 years
and the Weibull shape parameter or hazard rate sensitivity is set at 1:25: These
are risk neutral parameter values, and CDS prices are typically quoted most
actively at �ve years, though estimates in section 4 later are larger than �ve
years. The use of a �ve year life is thereby on the high side. The CDS quote for
a �ve year contract with 60% recovery would on this setting be 750 basis points,
a high value. So we are here considering an entity in some �nancial trouble. Risk
neutral hazard rates using a Weibull density were reported well above 1:25 for
example in Madan, Konikov and Marinescu (2006). Such a value is consistent
with our expectation that risk neutrally surviving longer gets harder with age,
even if under the real world measure it may be getting easier. The estimates
cited in Madan, Konikov and Marinescu (2006) re�ect this expectation.
The estimated parameters in section 4 di¤er from our base setting here, but

the former are calibrated to market bid ask prices for a market that is a stand
in for what may be relevant for structured products in general and for capital
requirements in particular. We anticipate that regulatory cones of acceptability
for relatively infrequently traded products would in general be more conservative
than those re�ected in market option prices.
The base parameter setting is

� � � 
 � � c a
0:3725 0:6925 �0:3863 0:4724 0:1 0:1 5 1:25

For a portfolio of options we take 10 options with �ve strikes and two ma-
turities. The maturities are 3 and 6 months. With the spot level set at 100;
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and zero interest and dividend yield, the strikes are 80; 90; 100; 110 and 120:
The options are out of the money, except the option with a strike of 100 is a
call . We �rst report on the gradient of total capital de�ned as the sum over
all options of the di¤erence between the ask and bid prices for these options.
The gradient is computed at the base point with respect to each of the eight
parameters. This gradient is given by

� � � 
 � � c a
74:5244 1:3297 �24:2293 �36:6515 205:6706 183:2942 �2:2387 �22:6903

We observe that volatility, �; and the volatility of volatility, �; raise capital
requirements while an increase in skewness, �; improves the return distribution
and reduces capital. An increase in the volatility spread, 
; or the scaling
parameter lowers capital requirements as it reduces volatilities at each maturity
below unity, raising them for the longer maturities. Reducing the cone by raising
either the coe¢ cient of loss aversion �; or raising the coe¢ cient for the absence
of gain enticement, �; raises capital requirements. On the credit side we see
that lowering the expected life raises capital requirements while an increase in
the Weibull shape parameter lowers capital requirements as it raises the growth
rate of the stock. The actual e¤ect on capital requirements depends critically
not just on the gradient but also on the actual change in the parameters.
In order to better appreciate the di¤erence of the e¤ects of changes in liq-

uidity and credit on bid and ask prices we present a graph of the response of
bid and ask prices on a 20% out of the money put and call option for an annual
maturity of changes in � = � and changes in c for a �xed value of a = 1:25:
We vary c from 1 to 10 years and vary � from :05 to :2: The other parameters
are as in the base case. We present in Figure 1 the e¤ect of the expected life
parameter on bid and ask prices.
Figure 2 shows the e¤ects on the same options of varying the liquidity pa-

rameter.
We clearly see the di¤erent e¤ects of variations in credit and liquidity on bid

and ask prices of options. While for the former both prices move in the same
direction the opposite is the case with respect to variations in liquidity. Hence,
credit and liquidity are di¤erentiated economic events.

5 Data and calibration summary

The purpose of the empirical analysis is not to test the proposed model. The
adequacy of these models for synthesizing option data has been demonstrated
in earlier studies and we cite Carr, Geman, Madan and Yor (2007), Cherny and
Madan (2010), Carr and Madan (2009) as examples. There are other models
that could be used for this purpose like a jump di¤usion model or a Lévy process
more generally, but as noted in Carr, Geman, Madan and Yor (2007), Lévy
processes do not �t the surface of option prices and it was this failure on the
part of Lévy processes that led to the development of the Sato process in the
�rst place. Stochastic volatility models could be used to synthesize the surface
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but they are at a minimum two dimensional Markov processes and it is well
known that option prices at a single time point provide little information on
mean reversion and the volatility of volatility. Furthermore as shown in Carr
and Madan (2005) and Davis and Hobson (2007), the absence of static arbitrage
implies the existence of a one dimensional Markov process synthesizing an option
surface at a point of time. The Sato process and its enhancement here is such
a process. There is also no issue of in sample or out of sample analysis as
the estimation is not conducted over any sample period that constitutes the in
sample period. The estimation is on the cross section of prices by strike and
maturity on a single day.
The object here is to use a mix of established models synthesizing option

surfaces at a point of time to estimate a risk neutral law jointly incorporating
for the �rst time market, credit and liquidity components. The risk neutral law
is for a point of time and uses data on option prices at one time point only to
evaluate the relative contributions to capital attributable to market, credit and
liquidity considerations as embedded in the parameters related to these e¤ects.
The measure of capital employed is the di¤erence between the two extreme
prices of conic �nance as a conservative assessment of loss exposure related to
unfavorable unwinds.
The eight parameters of our model are calibrated every third day on bid

and ask option prices for three years beginning October 23 2007 and ending in
September 22, 2010 for the four banks, BAC; GS; JPM; and WFC: Tables 1
to 8 present a summary of the data used. For each of the four stocks we report
quarterly averages of 19 variables for 12 quarters covering the three years. The
�rst variable is the average stock price, followed by the average of the �rst three
maturities and the average of the remaining maturities. We then report the
average interest rate and dividend yield for the shorter and longer maturity.
This is followed by the average strike below and above the spot for the shorter
and the longer maturity. Finally we report average bid prices below and above
the spot for the �rst and second maturity spectrums followed by the average
ask prices. There are eight tables as we split for each stock the twelve quarters
into two sets of six quarters.
There are in all 237 calibrations for each of the four names. Summary

statistics for the eight parameter estimates and the corresponding goodness of
�t metrics are presented. The goodness of �t metrics are the root mean square
error rmse; the average absolute error aae; and the average percentage error
de�ned as the average absolute error relative to the average option price in
the sample. Also presented are the average number of options used in the
calibrations. There are four tables, one for each bank, partitioned into two
pieces, one for the parameters and the other for the goodness of �t metrics.
Shown are the means, standard deviations and a variety of quantiles for the
smoothed parameters and the mean and standard deviations of the goodness of
�t statistics.
There were on average 30 to 80 options in the various calibrations. The av-

erage percentage error was around 3%: This compares favorably with published
and practical experience on such calibrations. Tables 9 through 12 provide the
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details for the four banks. The calibrations were done in Matlab using the rou-
tine fminunc for unconstrained minimization from version 6.5 of Matlab. They
took about an hour for each bank or 237 calibrations. We address the stability
and robustness later in this section.
We summarize that for BAC the value for � ranged from :3 to :67 at the

10 and 90 percentile points. The corresponding �gures for �; were :3328; and
:9764; for �; �0:83;�0:0396; and for 
; :3572; :5660: On the same quantiles loss
aversion ranged from 28 to 190 basis points while the absence of gain enticement
went from 14 basis points to 84 basis points. The credit parameter related to
the average life went from 13 to 41 years, while a ranged from :49 to 4:85:
The comparable statistics for GS were �; :3153; :3865; �; :4018; 1:0111;

�;�:5646; �:2148; and 
; :3826; :5307: For loss aversion we have 2 to 155 basis
points and gain enticement goes from 20 to 125 basis points. Credit life ranges
from 19 to 53 years while a goes from :7349 to 7:6455:
For JPM these values are �; :2905; :4488; �; :4705; :8939; �;�:6885; �:2573;

and 
; :4020; :5379: For loss aversion we have 3 to 125 basis points and gain
enticement goes from 51 to 161 basis points. Credit life ranges from 13 to 37
years while a goes from :9873 to 4:8703:
Finally for WFC we get �; :2161; :4731; �; :3950; 1:0302; �;�:8554; �:1614;

and 
; :3609; :5462: For loss aversion we have 19 to 217 basis points and gain
enticement goes from 69 to 267 basis points. Credit life ranges from 12 to 51
years while a goes from :6205 to 4:1181:
Additionally we present in Figures 3 and 4 two graphs of the time series

for all the eight parameters. The �rst graph covers the four option surface
parameters for all four banks while the second graph covers the liquidity and
credit parameters.
With regard to the robustness, stability and identi�cation of the parameters

we report in Tables 13 to 20 the average absolute value of the derivative of the
least squares objective function with respect to all eight parameters separately
for bid and ask prices for each of 12 quarters. When the absolute sensitivity
of the criterion with respect to a parameter is substantial the parameter is
typically well identi�ed and the minimization algorithm is not sensitive to local
perturbations of the starting value. We observe from these tables that the
option surface parameters are well identi�ed. The liquidity parameters re�ecting
movements in the cone of acceptable risks are also well identi�ed. On the credit
side there is a potential lack of identi�cation of the Weibull scale parameter
related to the average life, with occasional identi�cation of the shape parameter.
We also conducted a similar analysis based on eigenvector decompositions of the
derivative of the vector of squared errors with respect to the parameters to reach
the same conclusion.
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Figure 5: Graph of total capital required on 10 options, 3 calls, 2 puts for the
two maturities of 3 and 6 months across time for the four banks, BAC, GS, JPM
and WFC.

6 Time Series of Required Capital and their Risk
Sensitivities

In this section we construct the capital required on a hypothetical options book
of 10 options consisting of �ve strikes at each of two maturities. We work with
a zero interest rate and dividend yield and the maturities are 3 and 6 months
with the spot at 100 and strikes at 80; 90; 100; 110; 120: The options are out of
the money, with the exception of the one with the 100 strike which is a call. For
each option on each day in our time series we evaluate using smoothed values
for the eight parameters of our model the bid and ask prices for each option and
the capital required as the di¤erence between the ask and the bid. We then sum
the capital required over the 10 options. This is an upper limit of capital for one
could have computed the distorted expectation on the portfolio and there would
be some advantage to the portfolio. We note in this regard that the three calls
are comonotone as are the two puts and hence there is no portfolio advantage
within the puts and calls.
We present in Figure 5 a graph of the capital required on the 10 options

through our time period. The capital required begins to peak in the fall of 2008
at the peak of the crisis and has fallen steadily from then on.
We also present for each bank the capital required per option separately
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Figure 6: Capital required per call and put separately for BAC across time.

for calls and puts across time. These are presented in Figures 6, 7, 8 and
9 respectively. The call capital is higher than the put capital and initially
we thought this was essentially due to the inclusion of the at-the-money call,
however the exclusion of the at-the-money call gave the same results.
To understand the e¤ects of strike and maturity we also present the capital

required for all options aggregated over all four banks for the 80; 90 put and the
110; 120 call in Figure 10. For the e¤ect of maturity we sum the capital over all
options separately for the two maturities and present the graph in Figure 11 .
With a view to understanding the sensitivity of capital to risk components

we regressed the required capital for each stock on the eight risk parameters
�; �; �; 
; �; �; c and a: The results are presented in TABLE 21. We observe that
one may explain the capital as a linear function of the risk parameters over this
period. The most signi�cant contributors to capital movements are the liquidity
parameters followed by the option surface and credit.

7 Capital requirement movements around the
Lehman bankruptcy

In this section we enquire into the nature of the Lehman bankruptcy event for
the four banks. For this purpose we set up a hypothetical options book of 10
options consisting of �ve strikes at each of two maturities. We work with a zero
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Figure 7: Capital required per call and put separately for GS across time.
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Figure 9: Capital required per call and put separately for WFC across time.
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interest rate and dividend yield and the maturities are 3 and 6 months with
the spot at 100 and strikes at 80; 90; 100; 110; 120: The options are out of the
money, with the exception of the one with the 100 strike which is a call.
For each of the four banks we consider the calibrated parameters about

3 weeks before the bankruptcy at August 26 2008 and three weeks after the
bankruptcy at October 8 2008. For each of the ten options we determine using
calibrated parameters the bid and ask prices for these options and the capital
required measured as the sum over all 10 options of the di¤erence between the
ask and bid prices. This total required capital is computed at the two dates
for the four banks and the values are displayed in Table 22 along with the

26



percentage increase.

TABLE 22
Pre and post Lehman capital needs
on the hypothetical portfolio of 10 options consisting of
5 strikes of 80, 90, 100, 110 and 120 for a spot of
100 and two maturities of 3 and 6 months. The interest
rate and dividend yield was set at zero for these
calculations. Displayed are the di¤erence between
ask and bid prices using minmaxvar at calibrated
stress levels that distort a calibrated VG based Sato
process for the risk neutral law enhanced with credit
exposure modeled by a Weibull density for the default
time

BAC GS JPM WFC
Pre Lehman 2.3684 1.1851 2.0325 4.5648
Post Lehman 5.2694 3.8898 4.4995 8.3947
Percentage increase 122.48 228.22 121.38 83.89

These are signi�cant increases in capital requirements at market calibrated stress
levels for the cones of acceptable risks. Regulatory settings could even be more
conservative than these values.
We now decompose this increase in capital requirements into eight risk

sources represented by changes in the eight parameters. The capital increases
are computed for hypothetical options on returns with the spot at 100: Any
changes in the capital requirements are then due to variations in the parame-
ters. Since capital is now seen as a deterministic function of the form c = g(�)
one may approximate the change by

�c �
�
@g

@�
j�0

�
��: (8)

We compute the gradient vector at the parameter point for August 26, 2008 and
then evaluate the product of the gradient with the change in the parameter value
between October 8, 2008 and August 26, 2008. We determine the contribution
of each parameter as given by the product of the gradient with respect to the
parameter times the change in the parameter. The relative contribution is then
obtained on dividing the contribution by the right hand side of equation (8).
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The relative contributions are given in Table 6 for the four banks.

TABLE 23
Relative parameter contributions to capital requirements
from pre to post Lehman bankruptcy. Displayed are
�rst order estimates of change in capital computed
by the gradient of capital with respect to the parameter
on August 26 2008 times the change in the parameter
between October 8 2008 and August 26 2008 for
the four banks and eight parameters.

BAC GS JPM WFC
� 0.0406 -0.0657 0.0136 0.1003
� 0.0254 -0.0026 0.0002 0.0192
� 0.3476 0.0526 0.0307 -0.0264

 0.0409 0.0672 0.0750 0.1077
� 0.0374 0.8513 0.3998 0.0673
� 0.4854 0.0972 0.4808 0.7318
c -0.0073 0.0 0.0 0.0
a 0.0299 0.0 0.0 0.0

We see from Table 23 that the major contribution to changes in capital
requirements came in this instance from movements in the liquidity parameters.
Changes in credit played a minor role. On this evidence it is suggested that the
Lehman bankruptcy was primarily a liquidity event and not a credit event for
the other large banks.

8 Capital activity and risk contributions across
time

We report here on the total and relative contribution to changes in capital re-
quirements of parameter movements. For this purpose we employ the smoothed
parameter values at each calibration date. The change in capital attributed to
a parameter is measured by the absolute value of the sum over all ten options of
the gradient of capital required for the option times the change in the parameter
to the next calibration date. The gradient is computed at the calibration date.
For the relative contribution we divide these positive parametric contributions
by their sum.
We then partition the relative changes into three groups: The option surface,

liquidity and credit. The option surface contribution is given by the sum over
the contributions of �; �; �; 
: For liquidity we sum the contributions of �; �
while for credit we sum the contributions of c; a: Figures 12, 13, 14 and 15 show
the total and relative contributions of the three sets of risks on capital activity
for the four banks through the three years ending September 22, 2010.
From these �gures it is obvious that liquidity and the option surface are

the major contributors to variations in required capital with credit occasionally
playing a part.
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Figure 12: The total absolute change in required capital between successive
calibration dates due to movements in all parameters and the relative contribu-
tions of changes due to the options surface, credit and liquidity. The �rst panel
presents the total change. The second panel displays the contribution of the
option surface below the solid line. Above the dashed line is the contribution
of credit while liquidity has the contribution between the two lines. The results
are for BAC.
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Figure 13: The total absolute change in required capital between successive
calibration dates due to movements in all parameters and the relative contribu-
tions of changes due to the options surface, credit and liquidity. The �rst panel
presents the total change. The second panel displays the contribution of the
option surface below the solid line. Above the dashed line is the contribution
of credit while liquidity has the contribution between the two lines. The results
are for GS.
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Figure 14: The total absolute change in required capital between successive
calibration dates due to movements in all parameters and the relative contribu-
tions of changes due to the options surface, credit and liquidity. The �rst panel
presents the total change. The second panel displays the contribution of the
option surface below the solid line. Above the dashed line is the contribution
of credit while liquidity has the contribution between the two lines. The results
are for JPM.
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Figure 15: The total absolute change in required capital between successive
calibration dates due to movements in all parameters and the relative contribu-
tions of changes due to the options surface, credit and liquidity. The �rst panel
presents the total change. The second panel displays the contribution of the
option surface below the solid line. Above the dashed line is the contribution
of credit while liquidity has the contribution between the two lines. The results
are for WFC.
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9 Conclusion

The Sato process model for option prices introduced in Carr, Geman, Madan and
Yor (2007) is expanded to accomodate credit considerations by incorporating a
single jump to default occuring at an independent random time with a Weibull
distribution. Following Cherny and Madan (2010) explicit formulas for bid and
ask prices of two price economies are constructed. Movements in these prices
are then seen as synthesizing the e¤ects on required capital of changes to the
option surface, credit and liquidity. The �nal model for bid and ask prices of
put and call options has eight parameters, four from the Sato process, two from
the credit market and the underlying Weibull distribution and two for liquidity.
We observe additionally that the modeling and estimation conducted here

constitutes a novel addition to the literature as we estimate for the �rst time
(excepting Cherny and Madan (2010)) a model for both the bid and ask prices of
the option surface. The literature has heretofore estimated a single risk neutral
model using the midquote as a candidate for the one price of a market satisfying
the law of one price. Madan and Schoutens (2011) observe that the midquote of
our two price economy in fact deviates from a risk neutral valuation. There are
therefore no benchmarks for the exercise conducted here, in the extant literature.
This eight parameter model is estimated on daily option pricing data for

four banks over a three year period ending September 22, 2010. We follow Carr,
Madan and Vicente Alvarez (2010) and de�ne capital requirements supporting a
trade by the di¤erence between the ask and bid prices. From the perspective of
variations in capital required measured with respect to a hypothetical portfolio
for options on returns it is observed that the Lehman bankruptcy was primarily
a liquidity event for the other banks. We also observe that for explaining the
variation in capital requirements over time, a major role is played by the option
surface and liquidity considerations with credit playing a part occasionally.
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TABLE 1
BAC
Q1 Q2 Q3 Q4 Q5 Q6

Spot Price 39.2447 40.1652 31.7742 30.5445 18.7692 5.9502
Avg. First Maturity 0.2218 0.2744 0.2574 0.2437 0.2004 0.1929
Avg. Second Maturity 1.1496 1.2337 1.0200 0.8970 1.1406 0.9188
Avg. First Interest Rate 0.0421 0.0297 0.0254 0.0279 0.0222 0.0044
Avg. Second Interest Rate 0.0377 0.0264 0.0285 0.0302 0.0219 0.0069
Avg. First Div. Yld. 0.0489 0.0528 0.0598 0.0753 0.0570 0.0085
Avg. Second Div. Yld. 0.0523 0.0631 0.0590 0.0594 0.0472 0.0131
Avg. First Strike below Spot 34.1791 34.1652 26.8764 26.0625 15.9729 5.1287
Avg. First Strike above Spot 44.2476 45.6459 36.3498 35.1276 21.4063 6.8338
Avg. Second Strike below Spot 33.9958 34.3497 26.5813 25.9026 15.9357 5.1350
Avg. Second Strike above Spot 44.7407 46.0845 36.3008 35.3312 21.4155 7.0250
Avg. First Bid Price below Spot 1.1241 1.4156 1.0730 2.1195 1.9813 1.0003
Avg. Second Bid Price below Spot 3.5359 4.4784 2.8898 4.1296 4.0684 1.8759
Avg. First Bid Price above Spot 0.7901 1.0965 0.9079 1.6362 1.8893 0.9948
Avg. Second Bid Price above Spot 2.6818 2.9396 2.4584 3.2888 4.0526 1.9279
Avg. First Ask Price below Spot 1.2085 1.4973 1.1056 2.2159 2.0421 1.0210
Avg. Second Ask Price below Spot 3.8154 4.7905 2.9995 4.3312 4.2493 1.9224
Avg. First Ask Price above Spot 0.8694 1.1837 0.9399 1.7222 1.9583 1.0218
Avg. Second Ask Price above Spot 2.9502 3.2008 2.5570 3.4826 4.2570 1.9993



TABLE 2
BAC
Q7 Q8 Q9 Q10 Q11 Q12

Spot Price 10.3948 14.7307 16.4428 15.6618 17.4109 14.3793
Avg. First Maturity 0.2820 0.2430 0.2100 0.2772 0.2803 0.2572
Avg. Second Maturity 1.1013 0.7824 1.0305 1.3788 1.1544 0.8333
Avg. First Interest Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. Second Interest Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. First Div. Yld. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. Second Div. Yld. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. First Strike below Spot 8.8842 12.6246 14.0609 13.3499 14.8413 12.1789
Avg. First Strike above Spot 11.9819 17.0438 18.9473 17.9254 19.7929 16.5479
Avg. Second Strike below Spot 8.8850 12.5965 14.1901 13.5347 14.8144 12.2617
Avg. Second Strike above Spot 11.5029 16.9671 19.0604 18.1304 20.1352 16.6749
Avg. First Bid Price below Spot 1.3425 0.8469 0.6382 0.5282 0.6041 0.5076
Avg. Second Bid Price below Spot 2.6667 1.8795 2.0316 1.8500 1.7617 1.3667
Avg. First Bid Price above Spot 1.3163 0.8045 0.5955 0.4947 0.5375 0.4470
Avg. Second Bid Price above Spot 2.6627 2.0447 2.1769 1.9259 1.8169 1.2807
Avg. First Ask Price below Spot 1.3674 0.8677 0.6561 0.5436 0.6224 0.5237
Avg. Second Ask Price below Spot 2.7299 1.9204 2.0791 1.8928 1.8011 1.3923
Avg. First Ask Price above Spot 1.3453 0.8262 0.6132 0.5112 0.5562 0.4626
Avg. Second Ask Price above Spot 2.7410 2.0988 2.2374 1.9677 1.8582 1.3072



TABLE 3
GS
Q1 Q2 Q3 Q4 Q5 Q6

Spot Price 205.8890 178.8911 170.8944 161.5178 85.6764 86.4233
Avg. First Maturity 0.2669 0.2761 0.2656 0.2726 0.2620 0.2647
Avg. Second Maturity 1.3954 1.2039 1.1959 1.3659 1.4062 1.2889
Avg. First Interest Rate 0.0444 0.0297 0.0257 0.0279 0.0230 0.0065
Avg. Second Interest Rate 0.0392 0.0264 0.0294 0.0311 0.0227 0.0103
Avg. First Div. Yld. 0.0038 0.0053 0.0048 0.0058 0.0095 0.0234
Avg. Second Div. Yld. 0.0055 0.0070 0.0066 0.0080 0.0157 0.0143
Avg. First Strike below Spot 172.5547 152.8181 145.4529 137.6630 73.2500 73.1250
Avg. First Strike above Spot 235.2670 201.7718 192.0824 182.7132 98.5875 99.5625
Avg. Second Strike below Spot 173.7783 154.0553 145.5567 136.5889 73.2493 73.1250
Avg. Second Strike above Spot 237.1402 203.3560 193.9653 184.9455 98.3250 99.7303
Avg. First Bid Price below Spot 7.0581 6.6115 5.3806 7.7943 9.6847 8.2695
Avg. Second Bid Price below Spot 20.2126 17.6156 15.3161 19.3304 19.3282 18.9575
Avg. First Bid Price above Spot 8.4677 7.3763 6.2978 7.4759 8.5792 7.4613
Avg. Second Bid Price above Spot 29.4781 21.8284 20.7137 23.3501 20.5439 19.1864
Avg. First Ask Price below Spot 7.3142 6.8587 5.5272 8.2803 10.1389 8.4144
Avg. Second Ask Price below Spot 20.6261 16.9805 15.6486 20.3305 20.6422 19.3763
Avg. First Ask Price above Spot 8.7945 7.6288 6.4187 7.9397 9.1159 7.6175
Avg. Second Ask Price above Spot 30.8537 20.7746 21.0414 24.3448 22.1067 19.8048



TABLE 4
GS
Q7 Q8 Q9 Q10 Q11 Q12

Spot Price 130.5452 157.5548 177.9900 161.1004 159.8382 142.6230
Avg. First Maturity 0.2758 0.2581 0.2596 0.2679 0.2629 0.2680
Avg. Second Maturity 1.3037 1.3271 1.5860 1.4137 1.2143 1.3958
Avg. First Interest Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. Second Interest Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. First Div. Yld. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. Second Div. Yld. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. First Strike below Spot 111.3750 133.9406 151.8660 136.6635 135.8750 121.2500
Avg. First Strike above Spot 150.8474 178.9397 200.1926 183.1701 180.9420 163.1896
Avg. Second Strike below Spot 111.5588 134.2188 152.1073 137.4234 136.3171 121.6864
Avg. Second Strike above Spot 151.1912 179.4285 199.9964 183.1231 180.9791 164.1250
Avg. First Bid Price below Spot 7.2675 4.8544 4.8628 3.7362 4.5174 4.1726
Avg. Second Bid Price below Spot 19.6627 17.0755 19.5505 14.1029 14.2102 15.6209
Avg. First Bid Price above Spot 6.2807 4.8359 5.3282 3.8135 4.2268 3.8194
Avg. Second Bid Price above Spot 19.4212 18.3623 22.4179 15.9371 15.0809 16.2977
Avg. First Ask Price below Spot 7.3844 4.9612 4.9821 3.8391 4.6495 4.2755
Avg. Second Ask Price below Spot 20.1608 17.6654 20.6238 14.6941 14.7540 16.0029
Avg. First Ask Price above Spot 6.4167 4.9531 5.4483 3.9244 4.3612 3.9217
Avg. Second Ask Price above Spot 20.0600 19.0731 23.6683 16.6605 15.7275 16.8088



TABLE 5
JPM
Q1 Q2 Q3 Q4 Q5 Q6

Spot Price 39.3450 43.0062 40.4383 37.6808 35.4442 24.4726
Avg. First Maturity 0.2245 0.2808 0.2735 0.2333 0.2173 0.2744
Avg. Second Maturity 1.1767 1.2207 0.9771 0.7896 1.0275 1.2970
Avg. First Interest Rate 0.0424 0.0296 0.0256 0.0267 0.0236 0.0089
Avg. Second Interest Rate 0.0376 0.0264 0.0283 0.0287 0.0230 0.0132
Avg. First Div. Yld. 0.0257 0.0323 0.0332 0.0335 0.0381 0.0161
Avg. Second Div. Yld. 0.0308 0.0379 0.0368 0.0345 0.0365 0.0318
Avg. First Strike below Spot 33.6681 36.8206 34.5385 31.9375 30.2839 21.1644
Avg. First Strike above Spot 44.6517 49.0092 46.0548 42.8473 40.3281 27.8942
Avg. Second Strike below Spot 34.1567 37.0318 34.4160 31.7864 29.8635 20.5464
Avg. Second Strike above Spot 45.0655 49.6561 46.3749 42.6716 40.2559 27.7983
Avg. First Bid Price below Spot 1.1245 1.7480 1.4767 1.8811 3.0823 2.8912
Avg. Second Bid Price below Spot 3.5874 4.7679 3.5915 3.7742 6.2728 5.9152
Avg. First Bid Price above Spot 0.9930 1.4468 1.2797 1.6695 2.8129 2.6629
Avg. Second Bid Price above Spot 3.5251 4.0203 3.3235 3.7238 6.0316 5.9026
Avg. First Ask Price below Spot 1.2088 1.8578 1.5179 1.9742 3.1956 2.9541
Avg. Second Ask Price below Spot 3.9063 5.0783 3.6542 3.9758 6.5236 6.0870
Avg. First Ask Price above Spot 1.0925 1.5682 1.3223 1.7679 2.9392 2.7324
Avg. Second Ask Price above Spot 3.8789 4.2248 3.4066 3.9341 6.3487 6.1069



TABLE 6
JPM
Q7 Q8 Q9 Q10 Q11 Q12

Spot Price 33.1520 38.6284 43.8825 41.0949 43.0198 38.4432
Avg. First Maturity 0.2787 0.2467 0.2111 0.2686 0.2837 0.2688
Avg. Second Maturity 1.0663 0.7896 0.8423 1.3049 1.0974 0.8361
Avg. First Interest Rate 0.0067 0.0037 0.0026 0.0026 0.0058 0.0034
Avg. Second Interest Rate 0.0106 0.0065 0.0051 0.0074 0.0090 0.0047
Avg. First Div. Yld. 0.0049 0.0043 0.0042 0.0039 0.0059 0.0051
Avg. Second Div. Yld. 0.0064 0.0051 0.0042 0.0050 0.0142 0.0115
Avg. First Strike below Spot 28.5431 33.3140 37.9094 36.3986 38.0559 34.4533
Avg. First Strike above Spot 37.1799 42.6482 47.9970 45.6780 47.4132 43.5051
Avg. Second Strike below Spot 27.7499 33.0409 37.9387 35.3541 37.2218 34.3735
Avg. Second Strike above Spot 38.0731 43.2298 49.1882 47.4179 49.3418 43.1352
Avg. First Bid Price below Spot 2.6247 1.5324 1.2899 1.2823 1.4769 1.5171
Avg. Second Bid Price below Spot 5.3603 3.3665 3.6014 4.0096 3.9125 3.7590
Avg. First Bid Price above Spot 2.6194 1.6819 1.4856 1.2039 1.3465 1.0833
Avg. Second Bid Price above Spot 5.8348 3.7621 3.7661 3.5283 3.2964 3.1273
Avg. First Ask Price below Spot 2.6769 1.5658 1.3195 1.3128 1.5146 1.5462
Avg. Second Ask Price below Spot 5.4862 3.4568 3.7079 4.1142 4.0110 3.8357
Avg. First Ask Price above Spot 2.6791 1.7190 1.5193 1.2362 1.3849 1.1114
Avg. Second Ask Price above Spot 6.0157 3.8846 3.8877 3.6364 3.3950 3.2009



TABLE 7
WFC
Q1 Q2 Q3 Q4 Q5 Q6

Spot Price 30.9669 30.1230 27.4836 30.1961 29.8417 17.2202
Avg. First Maturity 0.2813 0.2815 0.2728 0.2591 0.2698 0.2728
Avg. Second Maturity 1.5430 1.3309 1.3191 1.3349 1.4117 1.3050
Avg. First Interest Rate 0.0467 0.0294 0.0270 0.0281 0.0227 0.0065
Avg. Second Interest Rate 0.0410 0.0263 0.0312 0.0313 0.0224 0.0104
Avg. First Div. Yld. 0.0324 0.0370 0.0393 0.0398 0.0390 0.0424
Avg. Second Div. Yld. 0.0381 0.0396 0.0394 0.0340 0.0315 0.0297
Avg. First Strike below Spot 26.1932 25.5341 23.3793 26.1248 26.0358 14.8932
Avg. First Strike above Spot 35.0676 34.4648 31.4400 34.1238 33.7505 19.7992
Avg. Second Strike below Spot 26.1674 25.5750 23.4179 25.7285 25.3033 14.6156
Avg. Second Strike above Spot 35.0604 34.2163 31.5230 34.4796 34.0296 19.7733
Avg. First Bid Price below Spot 0.9648 1.2410 0.9851 1.9339 3.2954 2.5609
Avg. Second Bid Price below Spot 2.9478 3.2936 2.6964 4.1903 6.2667 4.5430
Avg. First Bid Price above Spot 0.9238 1.1098 0.8582 1.6048 2.6488 2.3307
Avg. Second Bid Price above Spot 3.1993 3.1701 2.6653 3.9148 5.6953 4.4963
Avg. First Ask Price below Spot 1.0511 1.3426 1.0748 2.0921 3.5098 2.6759
Avg. Second Ask Price below Spot 3.3836 3.5628 2.8810 4.6264 6.7802 4.8182
Avg. First Ask Price above Spot 1.0159 1.2151 0.9481 1.7746 2.8941 2.4631
Avg. Second Ask Price above Spot 3.4910 3.5469 2.8894 4.4648 6.4190 4.8646



TABLE 8
WFC
Q7 Q8 Q9 Q10 Q11 Q12

Spot Price 21.8491 25.8781 28.3260 27.5206 31.4716 26.8436
Avg. First Maturity 0.2653 0.2547 0.2681 0.2606 0.2594 0.2549
Avg. Second Maturity 1.2557 1.3277 1.4452 1.2980 1.1080 1.3159
Avg. First Interest Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. Second Interest Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. First Div. Yld. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. Second Div. Yld. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg. First Strike below Spot 18.5042 22.1769 24.5985 24.1333 27.3234 23.3528
Avg. First Strike above Spot 24.7624 29.1128 31.9345 31.0555 34.7281 30.5766
Avg. Second Strike below Spot 18.6636 21.6832 23.7227 22.9853 26.5399 22.4307
Avg. Second Strike above Spot 25.4233 30.0096 32.4470 31.9857 35.5041 31.2107
Avg. First Bid Price below Spot 2.1514 1.3861 1.2813 0.9260 0.9732 0.9719
Avg. Second Bid Price below Spot 4.8352 4.2221 3.9607 2.6752 2.6019 3.2020
Avg. First Bid Price above Spot 2.1746 1.4094 1.1747 0.7788 0.8449 0.7620
Avg. Second Bid Price above Spot 4.7183 4.2972 4.3307 2.5122 2.5898 2.9836
Avg. First Ask Price below Spot 2.2443 1.4707 1.3441 0.9504 1.0050 0.9985
Avg. Second Ask Price below Spot 5.0596 4.4414 4.1381 2.7548 2.6912 3.3259
Avg. First Ask Price above Spot 2.2852 1.5008 1.2365 0.8048 0.8764 0.7888
Avg. Second Ask Price above Spot 5.0010 4.5963 4.5494 2.5897 2.6906 3.1049



TABLE 9
Calibration Results on BAC of Credit and Liquidity Modified VGSSD Sato process   

      Option Surface Parameters Liquidity Parameters   Credit Parameters
sigma nu theta gamma lambda eta c a

Mean 0.4202 0.6275 -0.4038 0.4802 0.0099 0.0048 24.6438 2.8165
Std. Dev. 0.1228 0.2486 0.3277 0.0881 0.0071 0.0027 10.1547 2.4045
Percentage Quantiles

1 0.2242 0.1578 -1.4733 0.2064 0.0014 0.0003 7.9354 0.3378
5 0.2919 0.2638 -1.0663 0.2991 0.0023 0.0008 11.5932 0.4218

10 0.3020 0.3328 -0.8300 0.3572 0.0028 0.0014 13.6045 0.4857
25 0.3337 0.4332 -0.5623 0.4441 0.0044 0.0028 17.0002 1.1010
50 0.3979 0.5898 -0.3296 0.5017 0.0081 0.0048 23.1412 2.4978
75 0.4699 0.8225 -0.2025 0.5325 0.0132 0.0063 29.7766 3.6711
90 0.6700 0.9764 -0.0396 0.5660 0.0190 0.0084 40.6698 4.8467
95 0.7047 1.0339 0.0177 0.5763 0.0251 0.0104 44.9378 7.7727
99 0.7429 1.1989 0.0876 0.6594 0.0334 0.0121 50.1391 12.8423

Goodness of Fit Metrics
rmse aae ape number of options

Mean 0.0738 0.0562 0.0316 35.8523
Std. Dev. 0.0683 0.0481 0.0171 10.2221



TABLE 10
Calibration Results on GS of Credit and Liquidity Modified VGSSD Sato process   

    Option Surface Parameters  Liquidity Parameters  Credit Parameters
sigma nu theta gamma lambda eta c a

Mean 0.3527 0.6832 -0.3524 0.4696 0.0056 0.0079 34.8995 4.0117
Std. Dev. 0.0388 0.2632 0.1493 0.0578 0.0058 0.0037 15.2737 3.2182
Percentage Quantiles

1 0.2736 0.2994 -0.7598 0.3448 0.0000 0.0011 16.7497 0.6302
5 0.3059 0.3876 -0.6798 0.3667 0.0001 0.0016 18.6538 0.6523

10 0.3153 0.4018 -0.5646 0.3826 0.0002 0.0020 19.8705 0.7349
25 0.3300 0.5329 -0.4183 0.4280 0.0006 0.0055 23.7206 2.0825
50 0.3439 0.6120 -0.3335 0.4832 0.0027 0.0080 31.9683 3.3678
75 0.3751 0.7972 -0.2680 0.5195 0.0097 0.0107 41.4322 4.9972
90 0.3865 1.0111 -0.2148 0.5307 0.0155 0.0125 53.3556 7.6455
95 0.4163 1.1154 -0.1022 0.5489 0.0163 0.0137 70.9174 11.0731
99 0.5001 1.8070 -0.0013 0.5680 0.0176 0.0145 84.5815 16.0059

Goodness of Fit Metrics
rmse aae ape number of options

Mean 0.5957 0.3662 0.0329 77.2869
Std. Dev. 0.9271 0.4595 0.0352 16.5025



TABLE 11
Calibration Results on JPM of Credit and Liquidity Modified VGSSD Sato process   

   Option Surface Parameters  Liquidity Parameters   Credit Parameters
sigma nu theta gamma lambda eta c a

Mean 0.3647 0.6998 -0.4213 0.4797 0.0052 0.0102 19.5679 3.0458
Std. Dev. 0.0768 0.1536 0.1733 0.0507 0.0046 0.0055 9.1157 1.6106
Percentage Quantiles

1 0.2261 0.3615 -0.9429 0.3818 0.0000 0.0033 11.7712 0.7222
5 0.2658 0.4466 -0.7348 0.3914 0.0003 0.0044 12.3632 0.7436

10 0.2905 0.4705 -0.6885 0.4020 0.0003 0.0051 13.1412 0.9873
25 0.3198 0.5889 -0.5387 0.4426 0.0009 0.0065 14.4034 1.7811
50 0.3486 0.7141 -0.3557 0.4914 0.0038 0.0100 15.7181 2.8846
75 0.3977 0.8099 -0.2987 0.5198 0.0088 0.0109 19.5962 4.1092
90 0.4488 0.8939 -0.2573 0.5379 0.0125 0.0161 37.4757 4.8703
95 0.5592 0.9530 -0.2290 0.5537 0.0137 0.0208 44.1697 5.9696
99 0.6000 0.9931 -0.2013 0.5690 0.0164 0.0319 47.4503 7.8637

Goodness of Fit Metrics
rmse aae ape number of options

Mean 0.0948 0.0705 0.0290 58.0802
Std. Dev. 0.0496 0.0335 0.0128 16.0066



TABLE 12
Calibration Results on WFC of Credit and Liquidity Modified VGSSD Sato process   

   Option Surface Parameters  Liquidity Parameters  Credit Parameters
sigma nu theta gamma lambda eta c a

Mean 0.3525 0.7594 -0.3678 0.4600 0.0104 0.0153 26.1688 2.6124
Std. Dev. 0.1044 0.2358 0.4022 0.0674 0.0071 0.0090 15.2591 1.3752
Percentage Quantiles

1 0.1583 0.2668 -1.0809 0.3429 0.0000 0.0041 11.2826 0.5197
5 0.1961 0.3156 -0.9423 0.3520 0.0013 0.0052 11.4094 0.5487

10 0.2161 0.3950 -0.8554 0.3609 0.0019 0.0069 11.8162 0.6205
25 0.3090 0.6292 -0.5525 0.4064 0.0052 0.0094 13.5901 1.5983
50 0.3442 0.7750 -0.2927 0.4576 0.0094 0.0119 21.3955 2.8544
75 0.3790 0.9263 -0.2671 0.5209 0.0134 0.0207 31.8577 3.6566
90 0.4731 1.0302 -0.1614 0.5462 0.0217 0.0267 51.3587 4.1181
95 0.6050 1.1378 0.3152 0.5535 0.0249 0.0319 58.2857 4.3507
99 0.6801 1.2210 1.2665 0.5575 0.0288 0.0478 65.9812 5.8069

Goodness of Fit Metrics
rmse aae ape number of options

Mean 0.1002 0.0571 0.0349 43.7173
Std. Dev. 0.0785 0.0543 0.0161 10.5690



TABLE 13
BAC
Avg. Absolute Sensitivity of Bid Prices
sigma nu theta gamma lamda eta c a

Q1 10.4710 1.0105 3.5254 3.0530 6.3415 23.0437 0.0022 0.4188
Q2 9.2505 1.9627 3.0452 2.9245 5.9694 20.8324 0.0120 0.8161
Q3 7 6859 0 3394 1 5040 2 4363 4 6130 16 2945 0 0059 0 1950Q3 7.6859 0.3394 1.5040 2.4363 4.6130 16.2945 0.0059 0.1950
Q4 5.3147 8.1879 2.1513 3.1814 4.5034 13.8625 0.0259 2.3832
Q5 2.8542 6.1314 0.4683 1.7148 2.3209 6.4090 0.0146 1.9420
Q6 0.9038 2.0212 0.4779 1.0735 0.3482 0.8335 0.0073 0.2325
Q7 0.7655 0.0802 0.2469 0.6566 0.9132 2.4890 0.0111 0.3985
Q8 1.6000 1.3382 0.2238 0.9182 1.2838 3.9373 0.0027 0.2407
Q9 1.3999 3.7286 0.3688 0.8397 1.2418 4.0059 0.0007 0.1095Q
Q10 1.7163 0.1370 0.2809 0.5931 1.1011 3.8051 0.0001 0.0009
Q11 1.8246 0.1310 0.4382 0.6966 1.2759 4.3552 0.0009 0.0781
Q12 1.1575 0.0601 0.2315 0.4523 0.8399 2.9145 0.0013 0.0384



TABLE 14
BAC
Avg. Absolute Sensitivity of Ask Prices
sigma nu theta gamma lamda eta c a

Q1 13.2010 1.2419 4.2619 3.8332 29.5953 8.5843 0.0026 0.4939
Q2 11.2021 2.3509 3.6084 3.5347 25.9518 7.5696 0.0139 0.9294
Q3 8 5567 0 3724 1 6361 2 6986 18 1903 5 2897 0 0065 0 2122Q3 8.5567 0.3724 1.6361 2.6986 18.1903 5.2897 0.0065 0.2122
Q4 6.1925 9.0695 2.3755 3.6247 16.1250 5.2167 0.0301 2.6824
Q5 3.3463 7.1821 0.7001 2.0212 7.5857 2.7948 0.0183 2.2200
Q6 0.9065 2.1699 0.4628 1.0620 0.9233 0.3869 0.0079 0.2527
Q7 0.8236 0.0859 0.2591 0.7036 2.6916 0.9735 0.0117 0.4226
Q8 1.7102 1.4329 0.2362 0.9803 4.2734 1.3668 0.0028 0.2533
Q9 1.5193 4.0076 0.3944 0.9082 4.3566 1.3617 0.0008 0.1174Q
Q10 1.8419 0.1474 0.2961 0.6346 4.0666 1.2015 0.0001 0.0010
Q11 1.9448 0.1393 0.4604 0.7418 4.6454 1.3778 0.0009 0.0841
Q12 1.2233 0.0635 0.2412 0.4771 3.0870 0.8932 0.0014 0.0403



TABLE 15
GS
Avg. Absolute Sensitivity of Bid Prices
sigma nu theta gamma lamda eta c a

Q1 311.2989 13.9577 107.7851 105.5504 190.0397 572.9021 0.3947 14.3101
Q2 186.6134 43.3509 76.5194 74.7206 137.4267 423.4965 0.2626 5.0556
Q3 205 6936 7 2845 56 8686 69 2453 130 4310 419 1693 0 2074 5 9646Q3 205.6936 7.2845 56.8686 69.2453 130.4310 419.1693 0.2074 5.9646
Q4 142.6868 16.7028 62.7668 69.1106 114.3479 359.6128 0.1013 33.1307
Q5 29.3733 18.9277 19.6688 29.2601 43.5058 116.5837 0.1429 45.5001
Q6 30.8408 18.1780 21.9369 27.9824 46.9547 123.9158 0.1479 35.0905
Q7 94.1940 28.8316 53.8823 55.4381 93.5647 275.5709 0.1439 18.5643
Q8 135.6020 16.6353 45.3832 52.4444 99.2491 325.1180 0.0110 0.1649
Q9 231.0429 22.2158 44.0546 71.4349 128.6162 417.1284 0.0000 0.0002Q
Q10 211.6656 7.8598 29.9143 48.1331 107.5315 371.6249 0.0317 0.6146
Q11 156.8463 39.7682 32.3852 50.1983 97.1068 324.2034 0.0704 5.7242
Q12 143.4408 11.5995 28.8135 40.5014 87.7912 302.6896 0.0612 1.8374



TABLE 16
GS
Avg. Absolute Sensitivity of Ask Prices
sigma nu theta gamma lamda eta c a a

Q1 370.9498 16.8426 137.2718 120.8807 693.6009 224.2542 0.7640 22.5801 0.4188
Q2 208.2717 50.4748 87.7557 83.2275 475.7938 152.8606 0.2810 5.5437 0.8161
Q3 218 1825 7 7445 59 4864 73 2449 449 9929 137 5364 0 2176 6 2750 0 1950Q3 218.1825 7.7445 59.4864 73.2449 449.9929 137.5364 0.2176 6.2750 0.1950
Q4 156.4715 19.4428 67.2470 75.9624 398.7843 126.0667 0.1078 41.6356 2.3832
Q5 34.7167 23.4577 23.1285 34.8659 142.0015 51.4699 0.1602 51.4357 1.9420
Q6 33.1332 19.3258 23.2737 29.9892 134.4594 49.8448 0.1561 37.0055 0.2325
Q7 101.3274 30.6987 57.3848 59.6618 303.6781 100.3334 0.1515 19.5147 0.3985
Q8 149.5967 18.2027 48.9103 57.6390 368.1363 109.4115 0.0116 0.1748 0.2407
Q9 270.8618 25.4064 50.0028 83.5783 490.2721 157.1312 0.0000 0.0002 0.1095Q
Q10 239.7168 8.8620 32.7483 54.4841 421.3487 126.5150 0.0355 0.6767 0.0009
Q11 173.8655 43.7590 34.9426 55.6975 364.3916 109.8604 0.0760 6.1350 0.0781
Q12 154.5127 12.6051 30.4498 43.5261 329.5058 95.6251 0.0660 1.9652 0.0384



TABLE 17
JPM
Avg. Absolute Sensitivity of Bid Prices
sigma nu theta gamma lamda eta c a

Q1 11.3007 0.4486 3.5851 3.8444 7.0510 23.8413 0.0032 0.0496
Q2 11.2991 0.4915 3.7032 4.1838 7.4770 24.7995 0.0129 0.4582
Q3 10 6527 1 3533 3 2423 4 0221 7 2526 24 7319 0 0053 0 0535Q3 10.6527 1.3533 3.2423 4.0221 7.2526 24.7319 0.0053 0.0535
Q4 9.0941 0.4238 3.3948 5.0402 6.8024 22.1556 0.0126 0.5170
Q5 5.4452 2.7624 3.1783 5.4121 6.4796 18.2728 0.0113 3.6528
Q6 2.8834 0.7233 0.9501 2.6134 3.4402 9.4151 0.0088 2.6238
Q7 4.9745 3.8017 2.1828 4.1575 5.7134 16.2723 0.0285 1.9407
Q8 4.7235 2.2117 3.9013 3.8218 5.6913 17.8972 0.0032 0.1520
Q9 9.6260 0.6360 3.2025 4.2087 6.7605 22.3807 0.0145 0.4422Q
Q10 10.5319 0.3464 3.1519 3.4584 6.8364 23.5496 0.0082 0.2431
Q11 10.9030 0.3816 3.2755 3.5070 7.0082 24.3745 0.0148 0.8580
Q12 8.3031 2.3362 3.3461 3.4727 6.5217 22.7208 0.0189 0.5873



TABLE 18
JPM
Avg. Absolute Sensitivity of Ask Prices
sigma nu theta gamma lamda eta c a

Q1 14.4291 0.5643 4.2605 4.8444 31.5361 9.1930 0.0040 0.0610
Q2 13.4643 0.5786 4.1962 4.9338 30.0670 9.0951 0.0150 0.5221
Q3 11 5962 1 4882 3 4578 4 3569 27 0859 7 9886 0 0056 0 0562Q3 11.5962 1.4882 3.4578 4.3569 27.0859 7.9886 0.0056 0.0562
Q4 10.2526 0.4831 3.6497 5.7012 25.1404 7.7996 0.0138 0.5753
Q5 6.2124 3.0679 3.5798 6.2021 21.2783 7.3612 0.0122 3.9446
Q6 3.1510 0.7767 1.0064 2.8346 10.3453 3.7045 0.0094 2.8029
Q7 5.3758 4.0420 2.3175 4.4782 17.8822 6.0990 0.0302 2.0528
Q8 5.1022 2.3476 4.1545 4.1063 19.8063 6.1142 0.0034 0.1617
Q9 10.4174 0.6763 3.4247 4.5487 24.8567 7.3429 0.0153 0.4661Q
Q10 11.4340 0.3767 3.3437 3.7461 26.2511 7.4109 0.0087 0.2569
Q11 11.6592 0.4035 3.4549 3.7456 26.3915 7.5790 0.0157 0.9024
Q12 8.8202 2.4653 3.5190 3.6819 24.4126 6.9912 0.0198 0.6139



TABLE 19
WFC
Avg. Absolute Sensitivity of Bid Prices
sigma nu theta gamma lamda eta c a

Q1 5.3001 0.2725 1.9649 1.8887 3.3024 10.9900 0.0223 0.1185
Q2 5.8503 0.2676 1.6546 2.2449 3.6642 12.0948 0.0060 0.1027
Q3 5.3023 0.2329 1.0639 1.8413 3.0769 10.5091 0.0033 0.0326
Q4 3.6018 1.2451 2.9792 2.9738 4.0520 11.8650 0.0058 0.9846
Q5 4.8127 1.4187 1.9088 3.4256 4.9108 13.2858 0.0113 5.7315
Q6 1.4826 0.5563 0.3696 1.4117 1.7335 4.7806 0.0036 1.9424
Q7 1.3889 2.3437 1.5624 2.2234 2.8909 7.9215 0.0107 1.8542
Q8 1.5090 2.2215 2.1112 2.3592 3.1582 9.5688 0.0065 0.4859
Q9 2.0233 7.4582 2.0094 2.2794 3.5653 11.1895 0.0080 0.6362
Q10 4.4386 0.1681 1.3612 1.5981 3.0392 10.5060 0.0019 0.0655
Q11 4.7305 0.1546 1.8132 1.8323 3.3769 11.9699 0.0035 0.3940
Q12 3.6042 0.1358 0.9340 1.5337 2.6950 9.4775 0.0070 0.3198



TABLE 20
WFC
Avg. Absolute Sensitivity of Ask Prices
sigma nu theta gamma lamda eta c a

Q1 7.7040 0.3857 2.5648 2.6787 16.4817 4.9760 0.0289 0.1699
Q2 7.5394 0.3426 1.9876 2.8598 15.8624 4.8754 0.0073 0.1239
Q3 6.5407 0.2872 1.2436 2.2503 13.0797 3.9058 0.0040 0.0387
Q4 4.5244 1.7042 3.6668 3.8326 15.9519 5.1983 0.0070 1.1764
Q5 6.1362 1.7629 2.2734 4.3499 17.3585 5.9658 0.0131 6.6677
Q6 1.7648 0.6349 0.4164 1.6774 5.6579 2.0543 0.0042 2.2289
Q7 1.5919 2.6555 1.7638 2.5392 9.1802 3.3332 0.0117 2.0539
Q8 1.7442 2.5332 2.4199 2.7237 11.3405 3.7330 0.0073 0.5478
Q9 2.3102 8.3326 2.2614 2.5750 13.0196 4.0717 0.0089 0.7072
Q10 4.8179 0.1816 1.4456 1.7290 11.6368 3.2965 0.0020 0.0700
Q11 5.1648 0.1682 1.9322 1.9986 13.2143 3.7614 0.0037 0.4222
Q12 3.9403 0.1477 0.9957 1.6697 10.6150 2.9454 0.0077 0.3444



TABLE 21
Results of Regressing Capital on Calibrated Parameters

BAC GS JPM WFC
Constant 0.1987 -0.7087 0.6370 14.8208
t-stat 0.50 -2.97 2.44 6.98
sigma 8.6572 8.4179 3.4465 -0.9939
t-stat 13.88 23.36 11.44 -0.49
nu -0.5490 -0.5233 0.2695 -7.9458
t-stat -1.91 -6.91 1.49 -10.92
theta -0.6968 -1.7883 -1.5137 7.0250
t-stat -4.18 -18.02 -15.34 25.23
gamma -6.4725 -4.9149 -4.6767 -10.4655
t-stat -9.79 -13.88 -12.59 -3.26
lamda 341.0639 372.3114 364.5014 384.9392
t-stat 35.79 93.36 113.44 22.25
eta 267.0748 347.8530 334.7662 372.3261
t-stat 12.68 56.20 123.36 22.76
c 0.0360 0.0039 0.0107 0.0501
t-stat 6.67 3.51 5.94 4.14
a -0.0518 -0.0352 -0.0582 -0.4749
t-stat -1.95 -6.59 -5.51 -4.22
R2 94.08 99.26 99.76 95.77




