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1 Probabilistic structure of Lévy processes

The assumption that observations are normally distributed is predominant in
many areas of statistics. So is the situation with time series of financial data
where from the very beginning of continuous-time modeling Brownian motion
itself or geometric Brownian motion became the favorites. This is largely due
to the fact that the normal distribution as well as the continuous-time process
it generates have nice analytic properties. The standard techniques to handle
these objects are known to a large community which at the same time is less
familiar with more sophisticated distributions and processes. On the other
hand a thorough look at data from various areas of finance such as equity, fixed
income, foreign exchange or credit, clearly reveals that assuming normality one
gets a model which is only a poor approximation of reality. If (St)t≥0 denotes
a price process in continuous or discrete time, the quantity to be considered
are the log returns

logSt+δ − logSt = log(St+δ/St). (1)

Usually log returns are preferred to relative price changes (St+δ − St)/St

because by adding up log returns over n periods one gets the log return for
the period nδ. This is not the case for relative price changes. Numerically the
difference between log returns and relative price changes is negligible because
x− 1 is well approximated by log x at x = 1.

Whereas log returns taken from monthly stock prices (St) are reasonably
represented by a normal distribution, the deviation becomes significant if one
considers prices on a daily or even an intraday time grid (see e.g. Eberlein
and Keller [12], Eberlein and Özkan [17]). As a consequence of the high vol-
umes traded nowadays on electronic platforms, daily price changes of several
percent are rather frequent also for big companies, i.e. companies with a high
market capitalization. A model based on the Gaussian distribution however
would allow this order of price change only as a very rare event. Let us un-
derline that the deviation of probabilities is not restricted to tails only but



2 Ernst Eberlein

can be observed on a lower scale for small price movements as well. Empirical
return distributions have substantially more mass around the origin than the
normal distribution. In order to improve the statistical accuracy of the models
and thus to improve derivative pricing, risk management and portfolio opti-
mization to name just some key areas of application, many extensions of the
basic models have been introduced. Let us refer to adding stochastic volatil-
ity, stochastic interest rates, correlation terms and so on. Without any doubt
these extensions typically reduce the deviation between model and reality. On
the other side in most cases the simple analytic properties are sacrificed and in
particular the distributions which the extended models produce are no longer
known explicitly.

A more fundamental change in the modeling approach is to consider from
the very beginning more realistic distributions and to keep the analytic form
of the model itself simple. This leads naturally to a broader class of driving
processes namely Lévy processes. A Lévy process X = (Xt)t≥0 is a process
with stationary and independent increments. Underlying is a filtered proba-
bility space (Ω,F , (Ft)t≥0, P ) to which the process (Xt)t≥0 is adapted. It is
well-known (Protter [29, Theorem 30.]) that a Lévy process has a version with
càdlàg paths, i.e. paths which are right-continuous and have limits from the
left. In the following we shall always consider processes with càdlàg paths. A
(one-dimensional) Lévy process can be represented in the following way where
we assume X0 = 0 for convenience

Xt = bt+
√
cWt + Zt +

∑

s≤t

∆Xs1l{|∆Xs|>1}. (2)

Here b and c ≥ 0 are real numbers, (Wt)t≥0 is a standard Brownian motion and
(Zt)t≥0 is a purely discontinuous martingale which is independent of (Wt)t≥0.
∆Xs := Xs − Xs− denotes the jump at time s if there is any and thus the
last sum represents the jumps of the process with absolute jump size bigger
than 1.

In case c = 0, i.e. if the continuous Gaussian part disappears, the process is
a purely discontinuous Lévy process. As we will see later many examples which
are important for modeling in finance are of this type. Let us also mention
that in the general case where both martingales, (Wt) and (Zt), are present,
because of their independence they are orthogonal in a Hilbert space sense.
This fact simplifies the analysis considerably because the two components of
the process do not interact. As a consequence the classical formulae known
for diffusion processes – for example Itô’s formula – are complemented by a
term or terms which come from the jump part of X, but no mixed terms have
to be considered.

The decomposition of a Lévy process as given in (2) is known as the Lévy–
Itô decomposition. At the same time every Lévy process is a semimartingale
and (2) is the so-called canonical representation for semimartingales. For a
semimartingale Y = (Yt)t≥0 the latter is obtained by the following procedure.
One first substracts from Y the sum of the big jumps, e.g. the jumps with
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absolute jump size bigger than 1. The remaining process

Yt −
∑

s≤t

∆Ys1l{|∆Ys|>1} (3)

has bounded jumps and therefore is a special semimartingale (see Jacod and
Shiryaev [24, I.4.21 and I.4.24]). Any special semimartingale admits a unique
decomposition into a local martingale M = (Mt)t≥0 and a predictable process
with finite variation V = (Vt)t≥0, i.e. the paths of V have finite variation over
each finite interval [0, t]. For Lévy processes the finite variation component
turns out to be the (deterministic) linear function bt. Any local martingale M
(with M0 = 0) admits a unique decomposition (see Jacod and Shiryaev [24,
I.4.18]) M = M c +Md where M c is a local martingale with continuous paths
and Md is a purely discontinuous local martingale which we denoted Z in (2).
For Lévy processes the continuous component M c is a standard Brownian
motion W = (Wt)t≥0 scaled with a constant factor

√
c.

What we see so far is that a Lévy process has two simple components, a
linear function and a Brownian motion. Now let us look more carefully into
the jump part . Because we assumed càdlàg paths, over finite intervals [0, t]
any path has only a finite number of jumps with absolute jump size larger
than ε for any ε > 0. As a consequence the sum of jumps along [0, t] with
absolute jump size bigger than 1 is a finite sum for each path.

Of course instead of the threshold 1 one could use any number ε > 0 here.
Contrary to the sum of the big jumps the sum of the small jumps

∑

s≤t

∆Xs1l{|∆Xs|≤1} (4)

does not converge in general. There are too many small jumps to get conver-
gence. One can force this sum to converge by compensating it, i.e. by subtract-
ing the corresponding average increase of the process along [0, t]. The average
can be expressed by the intensity F (dx) with which the jumps arrive. More
precisely the following limit exists in the sense of convergence in probability

lim
ε→0

( ∑

s≤t

∆Xs1l{ε≤|∆Xs|≤1} − t

∫
x1l{ε≤|x|≤1}F (dx)

)
. (5)

Note that the first sum represents the (finitely many) jumps of absolute jump
size between ε and 1. The integral is the average increase of the process in a
unit interval when jumps with absolute size smaller than ε or larger than 1
are eliminated. One cannot separate this difference, because in general non of
the two expressions has a finite limit as ε→ 0.

There is a more elegant way to express (5). For this one introduces the
random measure of jumps of the process X denoted by µX ,

µX(ω; dt, dx) =
∑
s>0

1l{∆Xs 6=0}ε(s,∆Xs(ω)(dt, dx). (6)
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If a path of the process given by ω has a jump of size ∆Xs(ω) = x at time
point s, then the random measure µX(ω; ·, ·) places a unit mass ε(s,x) at the
point (s, x) in R+×R. Consequently for a time interval [0, t] and a set A ⊂ R,
µX(ω; [0, t]×A) counts how many jumps of jump size within A occur for this
particular path ω from time 0 to t,

µX(ω; [0, t]×A) = |{(s, x) ∈ [0, t]×A | ∆Xs(ω) = x}|. (7)

This number is compared to the average number of jumps with size within A.
The latter can be expressed by an intensity measure F (A),

E
[
µX( · ; [0, t]×A)

]
= tF (A). (8)

With this notation one can write the sum of the big jumps at the end of (2)
in the form ∫ t

0

∫

R
x1l{|x|>1}µX(ds, dx) (9)

and one can express (Zt), the martingale of compensated jumps of absolute
size less than 1 in the form

∫ t

0

∫

R
x1l{|x|≤1}(µX(ds, dx)− dsF (dx)). (10)

Note that µX(ω, ds, dx) is a random measure, i.e. it depends on ω, whereas
dsF (dx) is a product measure on R+×R not depending on ω. Again µX and
dsF (dx) cannot be separated in general.

2 Distributional description of Lévy processes

The distribution of a Lévy process X = (Xt)t>0 is completely determined by
any of its marginal distributions L(Xt). Let us consider L(X1) and write for
any natural number n

X1 = X1/n + (X2/n −X1/n) + (X3/n −X2/n) + · · ·+Xn/n +Xn−1/n. (11)

By stationarity and independence of the increments we see that L(X1) is the
n-fold convolution of the laws L(X1/n),

L(X1) = L(X1/n) ∗ · · · ∗ L(X1/n). (12)

Consequently L(X1) and analogously any L(Xt) is an infinitely divisible dis-
tribution. Conversely any infinitely divisible distribution ν generates in a
natural way a Lévy process X = (Xt)t≥0 which is uniquely determined by
setting L(X1) = ν. If for n > 0, νn is the probability measure such that
ν = νn ∗ · · · ∗ νn, then one gets immediately for rational time points t = k/n,
L(Xt) as the k-fold convolution of νn. For irrational time points t, L(Xt) is
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determined by a continuity argument (see Breiman [8, chap. 14.4]). Because
the process to be constructed has independent increments, it is sufficient to
know the one-dimensional distributions.

As we have seen the class of infinitely divisible distributions and the class of
Lévy processes are in a one-to-one relationship. Therefore if a specific infinitely
divisible distribution is characterized by a few parameters the same holds
for the corresponding Lévy process. This fact is crucial for the estimation
of parameters in financial models which are driven by Lévy processes. The
classical example is Brownian motion which is characterized by the parameters
µ and σ2 of the normal distribution N(µ, σ2). A number of examples which
allow more realistic modeling in finance will be considered in the last section.

For an infinitely divisible distribution ν which we can write as ν = L(X1)
for a Lévy process X = (Xt)t≥0, the Fourier transform in its Lévy–Khintchine
form is given by

E[exp(iuX1)] = exp
[
iub− 1

2
u2c+

∫

R

(
eiux − 1− iux1l{|x|≤1}

)
F (dx)

]
. (13)

The three quantities (b, c, F ) are those which appeared in (2) and (8) resp.
(10) already. They determine the law of X1, L(X1), and thus the process
X = (Xt)t≥0 itself completely. (b, c, F ) is called Lévy–Khintchine triplet or in
semimartingale terminology the triplet of local characteristics. The truncation
function h(x) = x1l{|x|≤1} used in (13) could be replaced by other versions of
truncation functions, e.g. smooth functions which are identical to the identity
in a neighbourhood of the origin and go to 0 outside of this neighbourhood.
Changing h results in a different drift parameter b, whereas the diffusion
coefficient c ≥ 0 and the Lévy measure F remain unaffected. We note that F
does not have mass on 0, F ({0}) = 0, and satisfies the following integrability
condition ∫

R
min(1, x2)F (dx) <∞. (14)

Conversely any measure on the real line with these two properties together
with parameters b ∈ R and c ≥ 0 defines via (13) an infinitely divisible
distribution and thus a Lévy process. Let us write (13) in the short form

E[exp(iuX1)] = exp(ψ(u)). (15)

ψ is called the characteristic exponent . Again by independence and station-
arity of the increments of the process (see (11) and (12)) one derives that the
characteristic function of L(Xt) is the t-th power of the characteristic function
of L(Xt),

E[exp(iuXt)] = exp(tψ(u)). (16)

This property is useful when one has to compute numerically values of deriva-
tives which are represented as expectations of the form E[f(XT )] where XT

is the value of a Lévy process at maturity T , and the parameters of the Lévy
process were estimated as the parameters of L(X1).
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A lot of information on the process can be derived from integrability prop-
erties of the Lévy measure F . The following Proposition shows that finiteness
of moments of the process depends only on the frequency of large jumps since
it is related to integration by F over {|x| > 1}.
Proposition 1. Let X = (Xt)t≥0 be a Lévy process with Lévy measure F .

(a) Xt has finite p-th moment for p ∈ R+, i.e. E[|Xt|p] < ∞, if and only if∫
{|x|>1} |x|pF (dx) <∞.

(b) Xt has finite p-th exponential moment for p ∈ R, i.e. E[exp(pXt)] < ∞,
if and only if

∫
{|x|>1} exp(px)F (dx) <∞.

For the proof see Sato [34, Theorem 25.3]. From part (a) we see that if the
generating distribution L(X1) has finite expectation then

∫
{|x|>1} xF (dx) <

∞. This means that we can add − ∫
iux1l{|x|>1}F (dx) to the integral in (13)

and get the simpler representation for the Fourier transform,

E[exp(iuX1)] = exp
[
iub− 1

2
u2c+

∫

R

(
eiux − 1− iux

)
F (dx)

]
. (17)

In the same way in this case where the expectation of L(X1) is finite and
thus

∫ t

0

∫
R x1l{|x|>1}dsF (dx) exists, we can add

∫ t

0

∫

R
x1l{|x|>1}

(
µX(ds, dx)− dsF (dx)

)
(18)

to (10). Note that the sum of the big jumps which is
∫ t

0

∫
R x1l{|x|>1}µX(ds, dx)

always exists for every path. As a result of this we get (2) in the simpler
representation

Xt = bt+
√
cWt +

∫ t

0

∫

R
x
(
µX(ds, dx)− dsF (dx)

)
. (19)

Of course the drift coefficient b in (19) is different from the drift coefficient b in
the general representation (2). Actually b in (19) is nothing but the expecta-
tion E[X1] because the Brownian motion (Wt)t≥0 and the pure jump integral
process are both martingales with expectation zero and E[Xt] = tE[X1].
From representation (19) it is immediately clear that (Xt) is a martingale if
b = E[X1] = 0, it is a submartingale if b > 0 and a supermartingale if b < 0.

The case of finite expectation E[X1] under which we get (19) is of par-
ticular interest because all Lévy processes which we use in finance have finite
first moments.

Whereas the frequency of the big jumps determines existence of moments
of the process, the fine structure of the paths of the process can be read off the
frequency of the small jumps. We say the process has finite activity if almost
all paths have only a finite number of jumps along any time interval of finite
length. In case almost all paths have infinitely many jumps along any time
interval of finite length, we say the process has infinite activity .
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Proposition 2. Let X = (Xt)t≥0 be a Lévy process with Lévy measure F .

(a) X has finite activity if F (R) <∞.
(b) X has infinite activity if F (R) = ∞.

Note that by definition a Lévy measure satisfies
∫
R 1l{|x|>1}F (dx) < ∞.

Therefore the assumption F (R) < ∞ or F (R) = ∞ is equivalent to assume
finiteness or infiniteness of

∫
R 1l{|x|≤1}F (dx) < ∞. It is well-known that the

paths of Brownian motion have infinite variation. Consequently it follows from
representation (2) or (19) that Lévy processes a priori have infinite variation
paths as soon as c > 0. If the purely discontinuous component (Zt) in (2) or
the purely discontinuous integral process in (19) produce paths with finite or
infinite variation again depends on the frequency of the small jumps.

Proposition 3. Let X = (Xt)t≥0 be a Lévy process with triplet (b, c, F ).

(a) Almost all paths of X have finite variation if c = 0 and
∫
{|x|≤1} |x|F (dx) <

∞.
(b) Almost all paths of X have infinite variation if c 6= 0 or

∫
{|x|≤1} |x|F (dx) =

∞.

For the proof see Sato [34, Theorem 21.9]. The integrability of F in the
sense that

∫
{|x|≤1} |x|F (dx) < ∞ guarantees also that the sum of the small

jumps as given in (4) converges for (almost) every path. Therefore in this case
one can separate the integral in (10) or (19) and write e.g. in (19)

∫ t

0

∫

R
x
(
µX(ds, dx)− dsF (dx)

)
=

∫ t

0

∫

R
xµX(ds, dx)− t

∫

R
xF (dx). (20)

3 Financial modeling

The classical model in finance for stock prices or indices which goes back
to Samuelson [33] and which became the basis for the Black–Scholes option
pricing theory is the geometric Brownian motion given by the stochastic dif-
ferential equation

dSt = µStdt+ σStdWt. (21)

This equation is solved by

St = S0 exp
(
σWt + (µ− σ2/2)t

)
. (22)

The exponent of this price process is a Lévy process as given in (2) with
b = µ−σ2/2,

√
c = σ, Zt ≡ 0 and no big jumps either. Log returns logSt+1−

logSt produced by this process along a time grid with span 1 are normally
distributed variables N(µ − σ2/2, σ2) which are far from being realistic for
most time series of financial data. Once one has identified a more realistic
parametric distribution ν by fitting an empirical return distribution – several
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classes of candidate distributions will be presented in section 4 – the right
starting point for a statistically more accurate model for prices is equation
(22). Considering the Lévy process X = (Xt)t≥0 such that L(X1) = ν, the
model

St = S0 exp(Xt) (23)

which we call exponential Lévy model, produces along a time grid with span
1 log returns which are exactly equal to ν. This way one can implement an
empirically derived (infinitely divisible) distribution into a model with exact
returns. If one would start instead with a stochastic differential equation, i.e.
with the equivalent of (21), which is the equation

dSt = St−dXt, (24)

one gets as solution the stochastic exponential

St = S0 exp(Xt − ct/2)
∏

s≤t

(1 +∆Xs) exp(−∆Xs). (25)

The distribution of the log returns of this process is not known in general. As
one can see directly from the term (1 + ∆Xs) in (25), another drawback of
this model is that it can produce negative stock prices as soon as the driving
Lévy process X has negative jumps with absolute jump size larger than 1.
The Lévy measures of all interesting classes of distributions which we shall
consider in the next section have strictly positive densities on the whole nega-
tive half line and therefore the Lévy processes generated by these distributions
have negative jumps of arbitrary size. For completeness we mention that the
stochastic differential equation which describes the process (23) is

dSt = St−
(
dXt + (c/2)dt+ e∆Xt − 1−∆Xt

)
. (26)

For the pricing of derivatives it is interesting to characterize when the
price process given by (23) is a martingale because pricing is done by taking
expectations under a risk neutral or martingale measure. For (St)t≥0 to be
a martingale, first of all the expectation E[St] has to be finite. Therefore
candidates for the role of the driving process are Lévy processes X which
have a finite first exponential moment

E[exp(Xt)] <∞. (27)

Proposition 1 characterizes these processes in terms of their Lévy measure.
At this point one should mention that the necessary assumption (27) a priori
excludes stable processes as suitable driving processes for models in finance.
Second let X be given in the representation (19) (still assuming (27)) then
St = S0 exp(Xt) is a martingale if

b = − c
2
−

∫

R

(
ex − 1− x

)
F (dx). (28)
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This can be seen by applying Itô’s formula to St = S0 exp(Xt), where (28)
guarantees that the drift component is 0. An alternative way to derive (28) is
to verify that the process (Mt)t≥0 given by

Mt =
exp(Xt)

E[exp(Xt)]
(29)

is a martingale. Stationarity and independence of increments have to be used
here. (28) follows once one verifies (see (15)–(17)) that

E[exp(Xt)] = exp
[
t

(
b+

c

2
+

∫

R
(ex − 1− x)F (dx)

)]
. (30)

The simplest models for fixed income markets take the short rate rt as
the basic quantity and derive all other rates from rt. More sophisticated ap-
proaches model simultaneously the whole term structure of rates for a con-
tinuum of maturities [0, T ∗] or as in the case of the LIBOR model the rates
corresponding to the maturities of a tenor structure T0 < T1 < · · · < TN = T ∗.
As a consequence these models are mathematically more demanding. A sur-
vey of interest rate modeling in the classic setting of diffusions is given by
Björk [6] in this volume. The interest rate theory for models driven by Lévy
processes has been developed in a series of papers by the author with varying
coauthors (Eberlein and Kluge [13, 14], Eberlein and Özkan [16, 18], Eberlein
and Raible [20], Eberlein, Jacod, and Raible [22]).

Two basic approaches are the forward rate approach and the LIBOR ap-
proach. In the first case one assumes the dynamics of the instantaneous for-
ward rate with maturity T , contracted at time t, f(t, T ) in the form

f(t, T ) = f(0, T ) +
∫ t

0

α(s, T )ds−
∫ t

0

σ(s, T )dXs (31)

for any T ∈ [0, T ∗]. The coefficients α(s, T ) and σ(s, T ) can be deterministic
or random. Starting with (31) one gets zero-coupon bond prices B(t, T ) in a
form comparable to the stock price model (23), namely

B(t, T ) = B(0, T ) exp
( ∫ t

0

(r(s)−A(s, T ))ds+
∫ t

0

Σ(s, T )dXs

)
. (32)

Here rs = r(s) = f(s, s) is the short rate and A(s, T ) resp. Σ(s, T ) are derived
from α(s, T ) resp. σ(s, T ) by integration.

In the Lévy LIBOR market model (Eberlein and Özkan [18]) the forward
LIBOR rates L(t, Tj) for the time points Tj(0 ≤ j ≤ N) of a tenor structure
are chosen as the basic rates. As a result of a backward induction one gets for
each j the rate in the following uniform form

L(t, Tj) = L(0, Tj) exp
( ∫ t

0

λ(s, Tj)dXTj+1
s

)
(33)
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where λ(s, Tj) is a volatility structure, XTj+1 = (XTj+1
t )t≥0 is a process de-

rived from an initial (time-homogeneous or time-inhomogeneous) Lévy process
XTN = (XTN

t )t≥0 and equation (33) is considered under PTj+1 , the forward
martingale measure which is derived during the backward induction. Closely
related to the LIBOR model is the forward process model where forward pro-
cesses F (t, Tj , Tj+1) = B(t, Tj)/B(t, Tj+1) are chosen as the basic quantities
and modeled in a form analogous to (33). An extension of the Lévy LIBOR
approach to a multicurrency setting taking exchange rates into account has
been developed in Eberlein and Koval [15]. In all implementations of these
models pure jump processes have been chosen as driving processes.

4 Examples of Lévy processes with jumps

4.1 Poisson and compound Poisson processes

The simplest Lévy measure one can consider is ε1, a point mass in 1. Adding
an intensity parameter λ > 0 one gets F = λε1. Assuming c = 0 this Lévy
measure generates a process X = (Xt)t≥0 with jumps of size 1 which occur
with an average rate of λ in a unit time interval. Otherwise the paths are
constant. X is called a Poisson process with intensity λ. The drift parameter
b in (17) is E[X1] which is λ. Therefore the Fourier transform takes the form

E[exp(iuXt)] = exp
[
λt(eiu − 1)

]
. (34)

Any variable Xt of the process has a Poisson distribution with parameter λt,
i.e.

P [Xt = k] = exp(−λt) (λt)k

k!
.

One can show that the successive waiting times from one jump to the next
are independent exponentially distributed random variables with parameter
λ. Conversely, starting with a sequence (τi)i≥1 of independent exponentially
distributed random variables with parameter λ and setting Tn =

∑n
i=1 τi, the

associated counting process

Nt =
∑

n≥1

1l{Tn≤t} (35)

is a Poisson process with intensity λ.
A natural extension of the Poisson process with jump height 1 is a process

where the jump size is random. Let (Yi)i≤1 be a sequence of independent,
identically distributed random variables with L(Y1) = ν.

Xt =
Nt∑

i=1

Yi, (36)
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where (Nt)t≥0 is a Poisson process with intensity λ > 0 which is independent
of (Yi)i≥1, defines a compound Poisson process X = (Xt)t≥0 with intensity λ
and jump size distribution ν. Its Fourier transform is given by

E[exp(iuXt)] = exp
[
λt

∫

R

(
eiux − 1

)
ν(dx)

]
. (37)

Consequently the Lévy measure is given by F (A) = λν(A) for measurable
sets A in R.

4.2 Lévy jump diffusion

A Lévy jump diffusion is a Lévy process where the jump component is given
by a compound Poisson process. It can be represented in the form

Xt = bt+
√
cWt +

Nt∑

i=1

Yi (38)

where b ∈ R, c > 0, (Wt)t≥0 is a standard Brownian motion, (Nt)t≥0 is a
Poisson process with intensity λ > 0 and (Yi)i≥1) is a sequence of independent,
identically distributed random variables which are independent of (Nt)t≥0.
For normally distributed random variables Yi, Merton [28] introduced the
process (38) as a model for asset returns. Kou [25] used double-exponentially
distributed jump size variables Yi. In principle any other distribution could be
considered as well, but of course the question is if one can control explicitly
the quantities one is interested in as for example L(Xt).

4.3 Hyperbolic Lévy processes

Hyperbolic distributions which generate hyperbolic Lévy processes X = (Xt)t≥0

– also called hyperbolic Lévy motions – constitute a four parameter class of
distributions. Their Lebesgue density is given by

dH(x) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp
(− α

√
δ2 + (x− µ)2 + β(x− µ)

)
. (39)

Here Kν denotes the modified Bessel function of the third kind with index ν.
The four parameters of this distribution have the following meaning: α > 0
determines the shape, β with 0 ≤ |β| < α the skewness, µ ∈ R the location
and δ > 0 is a scaling parameter comparable to σ in the normal distribution.
Taking the logarithm of dH one gets a hyperbola. This explains the name
hyperbolic distribution. Based on an extensive empirical study of stock prices
hyperbolic Lévy processes were first used in finance in [12].

The Fourier transform φH of a hyperbolic distribution can be easily derived
because of the exponential form of dH in (39).
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φH(u) = exp(iuµ)
(

α2 − β2

α2 − (β + iu)2

)1/2
K1(δ

√
α2 − (β + iu)2)

K1(δ
√
α2 − β2)

. (40)

Moments of all orders exist. In particular the expectation is given by

E[X1] = µ+
βδ√
α2 − β2

K2(δ
√
α2 − β2)

K1(δ
√
α2 − β2)

. (41)

Analyzing φH in the form (17) one sees that c = 0. This means that hyperbolic
Lévy motions are purely discontinuous processes. The Lévy measure F has an
explicit Lebesgue density (see (46)).

4.4 Generalized hyperbolic Lévy processes

Hyperbolic distributions are a subclass of a more powerful five parameter
class, the generalized hyperbolic distributions (Barndorff-Nielsen [2]). The ad-
ditional class parameter λ ∈ R has the value 1 for hyperbolic distributions.
The Lebesgue density for these distributions with parameters λ, α, β, δ, µ is

dGH(x) = a(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ− 1
2 )/2 (42)

+Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
exp(β(x− µ))

where the normalizing constant is given by

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ− 1

2 δλKλ(δ
√
α2 − β2)

.

Other parametrizations are in use as well. Generalized hyperbolic distributions
can be represented as normal mean-variance mixtures

dGH(x;λ, α, β, δ, µ) =
∫ ∞

0

dN(µ+βy,y)(x)dGIG(y;λ, δ,
√
α2 − β2)dy (43)

where the mixing distribution is generalized inverse Gaussian with density

dGIG(x;λ, δ, γ) =
(γ
δ

)λ 1
2Kλ(δγ)

xλ−1 exp
(
− 1

2

(δ2
x

+ γ2x
))

(x > 0). (44)

The exponential Lévy model with generalized hyperbolic Lévy motions as
driving processes was introduced in [11] and [19].

The moment generating function MGH(u) exists for u with |β + u| < α
and is given by

MGH(u) = exp(µu)
(

α2 − β2

α2 − (β + u)2

)λ/2
Kλ(δ

√
α2 − (β + u)2)

Kλ(δ
√
α2 − β2)

. (45)
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As a consequence exponential moments (27) are finite. This fact is crucial for
pricing of derivatives under martingale measures. The Fourier transform φGH

is obtained from the relation φGH(u) = MGH(iu). Analyzing φGH in its form
(17) we see again that c = 0, i.e. generalized hyperbolic Lévy motions are
purely discontinuous processes. The Lévy measure F has a density given by

gGH(x) =
eβx

|x|
( ∫ ∞

0

exp
(−

√
2y + α2|x|)

π2y
(
J2
|λ|(δ

√
2y) + Y 2

|λ|(δ
√

2y)
)dy + 1l{λ≥0}λe−α|x|

)
.

(46)
Setting λ = − 1

2 in (42) we get another interesting subclass, the normal
inverse Gaussian (NIG) distributions, which were first used in finance in [3].
Their Fourier transform is particularly simple since the Bessel function satis-
fies K−1/2(z) = K1/2(z) =

√
π/(2z)e−z. Therefore

φNIG(u) = exp(iuµ) exp
(
δ
√
α2 − β2

)
exp

(− δ
√
α2 − (β + iu)2

)
. (47)

From the form (47) one sees immediately that NIG-distributions are closed
under convolution in the two parameters δ and µ, because taking a power t
in (47) one gets the same form with parameters tδ and tµ.

4.5 CGMY and Variance Gamma Lévy processes

Carr, Geman, Madan, and Yor [9] introduced a class of infinitely divisible
distributions – called CGMY – which extends the Variance Gamma (V.G.)
model due to Madan and Seneta [27] and Madan and Milne [26]. CGMY Lévy
processes have purely discontinuous paths and the Lévy density is given by

gCGMY (x) =





C
exp(−G|x|)
|x|1+Y

x < 0,

C
exp(−Mx)
x1+Y

x > 0.
(48)

The parameter space is C, G, M > 0 and Y ∈ (−∞, 2). The process has
infinite activity iff Y ∈ [0, 2) and the paths have infinite variation iff Y ∈
[1, 2). For Y = 0 one gets the three parameter Variance Gamma distributions.
The latter are also a subclass of the generalized hyperbolic distributions (see
Eberlein and von Hammerstein [21] or Raible [31]). For Y < 0 the Fourier
transform of CGMY is given by

φCGMY (u) = exp
(
CΓ (−Y )

[
(M − iu)Y −MY + (G+ iu)Y −GY

])
. (49)

4.6 α-stable Lévy processes

Stable distributions are a classical subject in probability. They constitute a
four parameter class of distributions with Fourier transform given by
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φstab(x) = exp
[
σα(−|θ|α) + iθω(θ, α, β)) + iµθ

]

where

ω(θ, α, β) =

{
β|θ|α−1 tan πα

2 if α 6= 1,

−β 2
π ln |θ| if α = 1.

(50)

The parameter space is 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and µ ∈ R. For α = 2
one gets the Gaussian distribution with mean µ and variance 2σ2. For α < 2
there is no Gaussian part which means the paths of an α-stable Lévy motion
are purely discontinuous in this case.

Explicit densities are known in three cases only: the Gaussian distribution
(α = 2, β = 0), the Cauchy distribution (α = 1, β = 0), and the Lévy
distribution (α = 1/2, β = 1). Stable distributions have been used in risk
management (see [30]) where the heavy tails are exploited. As pointed out
earlier, their usefulness for modern financial theory in particular as a pricing
model is limited for α 6= 2 by the fact that the basic requirement (27) is not
satisfied.

4.7 Meixner Lévy processes

The Fourier transform of Meixner distributions is given by

φMeix(u) =
(

cos(β/2)
cosh((αu− iβ)/2)

)2δ

for parameters α > 0, |β| < π, δ > 0. The corresponding Lévy processes are
purely discontinuous with Lévy density

gMeix(x) = δ
exp(βx/α)
x sinh(πx/α)

.

The process has paths of infinite variation. This process has been introduced
by Schoutens in the context of financial time series (see [35]).
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[12] E. Eberlein and U. Keller. Hyperbolic distributions in finance. Bernoulli,
1(3):281–299, 1995.

[13] E. Eberlein and W. Kluge. Exact pricing formulae for caps and swaptions
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